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We report variational calculations of a large number of vibrational states of ta@®the H--CO, transition

state forJ = 0 using the code MULTIMODE and a realistic six degree-of-freedom potential energy surface.
State-dependent rotational constants for both species are calculated for the same sets of vibrational states
from exact rotation/vibration calculations fdr= 1. The results of these variational calculations are used to
obtain RRKM rate constants for the decomposition of H&Oform H+ CO,. Comparison is made between

these nonseparable RRKM results and those obtained from a standard, separable harmonic oscillator/rigid
rotor evaluation of the RRKM rate constant expression. Significant differences between the nonseparable
and separable results are found.

I. Introduction effect of incorporating anharmonicity effects within separable
oscillator models on TST rate constants for a series d&f BC

Despite advances in computer technology in the past 2 rgactiong and for the OH+ H,? reaction. Recently Isaacs®n
decades, accurate quantum calculations of unimolecular andy, 54 generated a potential energy surface for the O,

bimolecular reaction rate constants in systems with four or more
atoms remain largely outside the realm of feasibflifyor such
systems one must rely upon classical trajectory mefhods

reaction in the vicinity of the reaction path and then applied
second-order perturbation theory and the self-consistent field
-~ X > configuration interaction (SCF-Ghmethod to a quartic force

statistical theories, such as transition state theory (50) field to obtain the anharmonic vibrational energy levels for the

6 i . .
RRKM theory; to estimate elementary rate constants. Central y,nq degrees-of-freedom orthogonal to the reaction coordinate.
to these statistical theories is an approximate calculation of the Tase |evels. which include the effects of anharmonicity and

cumulative reaction probability (CRP), denots(E) whereE mode-mode coupling, in many cases deviated significantly
is the total energy. The CRP is defined as the sum of the state-g.o 1 their purely harmonic approximations. Miller and co-

to-state reaction probabilities summed over all initial and final

states and_it can be us_ed to straightforwardly determine including the unimolecular decomposition 06@0) a non-
microcanonical and canonical rate constdtsTST the exact  ggparaple semiclassical TST (SCTST) approach to calculating
N(E) is approximated by the number of states of the transition \g) within a second-order perturbative treatment of anharmo-
state with energy less than or equalEoThus the dynamics  igity for the determination of the good actiofsn a related
calculation is replaced for a nonrotating N-atom system by & ye\elopment, Seideman and Miller have shown how the exact
state count of the (8 — 7)—dimensional “bound” states of the  crp can be evaluated directly (i.e., without calculation of the
transition state. scattering matrix) using the normal coordinates of the transition
Routinely this state count is performed by invoking a further siate, including the imaginary-frequency mdde.
approximation that the vibrational degrees-of-freedom of the  For unimolecular reactions, TST is combined with a statistical
transition state are separable and harmonic. This form of TST treatment of the energized reactant (based on the dynamical
is referred to as separable TST (STST). Before the advent of assumption of rapid intramolecular vibrational energy redistribu-
high-speed computing, this approach was defensible on thetion (IVR) relative to the reaction rate) in RRKM (or quasi-
grounds that it was the only feasible approach given the era’s equilibrium) theory. RRKM theory gives a rate constant

typical dearth of ab initio data for stable molecules and even expression (neglecting for now the role of rotations) of the
more so for transition states. However, now that chemically form14

accurate potential energy surfaces can be developed for triatomic

workers have developed and applied (to several reactions

and tetraatomic systems, we must look beyond the standard oN*(E)
approach to state counting to include the effects of anharmo- (E) = ho(E (1)
nicity and intermode coupling (i.e., nonseparability). p(E)

A limited amount of work has been done in the past 2 decadesyhere p(E) is the density of vibrational states at the enefgy

beyond this conventional approach. Garrett, Truhlar, and co- (measured relative to the reagent zero-point enefg¥(g) is
workers in a series of papers during the 1980s examined thethe total number (sum) of vibrational states in the transition

state with energies not exceediggand is given by
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with h(x) being the Heaviside step function apef} being the  larly defined but now the two coordinat@sandQ; are nonzero,
set of transition state energy levels (measured relative to theetc. The one-mode representation (1-MR) of the potential
zero-point energy of the reagent), ands the reaction sym-  includes only the terms in the first sum above, the two-

metry factor. Application of RRKM theory to a particular mode representation (2-MR) retains the terms in the first and
reaction then involves, in addition to an approximate calculation second sums above, etc. Our applications to’84tave been
of the CRP, the calculation of the density of states of the limited (by computational resources) to explicit coupling of
energized molecule at the relatively high energies typical of @ maximum of four modes. As a result, the calculations
molecular bond breaking. Thus, incorporation of the effects of described in this paper involve at most four-dimensional
anharmonicity and intermode coupling into a calculatiopof  quadratures. Although the method is not exact, we have found
(E) represents an even greater computational challenge thanit to be capable of producing quite accurate results for tetra-
incorporating these effects for the transition state. This need atomic molecule$® (Note by way of contrast that in the
for accurate densities of states to make RRKM theory quantita- Standard separable TST/RRKM approach the potential is taken
tive has long been recognizé&1>16Hase, Schinke, and co- to be a harmonic 1-MR.)
workers recently determined essentially exact values (including The representation of the potential given by eq 3 can be
effects of both anharmonicity and intermode coupling) of incorporated into the full Watson normal-mode Hamiltonian
N¥(E) and p(E) for the decomposition of the nonrotating (appropriate for nonlinear molecules) for which the kinetic
triatomic HG, radicall’ energy operator is (in atomic units,=1)?*

In this paper we apply nonseparable RRKM theory to the
unimolecular decomposition of the tetraatomic HO@dical 1 . . 1 52 1
to form H + CQ,, using a six degree-of-freedom potental T=- ; (Jo = T dop(Ig — ) — = Z —_— == Z oo
and including effects of rotation. Our calculations of the 2 2% Q2 8%
nonseparable bound states of the energized reactant and the (4)
transition state were done using the code MULTIMOBRA o
summary of the theory and computational methods implementedwhere J,, Js are components of the total angular momentum
within MULTIMODE is given in the next section along with  operator,,, 73 are components of the vibrational angular
the details of the utilization of its output for the current RRKM momentum operator, and is the inverse of the moment of
calculations. Section Il presents our results with an emphasisinertia tensor. Explicitly,
on comparing them to the results obtained by application of
separable RRKM theory (i.e., separable harmonic vibrations and ad

. . . . . . . s — H {08
arigid rotator) to this reaction. In the final section we summarize T = —1 Z G (5)
our important findings and conclusions. : 9Q

Il. Theory and Computational Details where the, are the Coriolis coupling constants, related to the

An exact evaluation of the quantitidg(E) andp(E) used in vectors of the normal coordinates by

the RRKM calculation of the microcanonical rate constdE)

requires a knowledge of the exact energy levels of the energized k1 = €ap, Z Lind i (6)

molecule and of the transition state species. Although the !

computation of the “exact” bound states of triatomic molecules

has become almost routi&the corresponding calculation for ~ The mass-scaled normal coordinat@z are related to the

a polyatomic molecule (with four or more atoms) poses a Cartesian coordinates; by

formidable computational challenge. Such eigenvalue determi-

nations are hampered by an essentially exponential scaling of Q.= Z M4 — 12 (7)

the computational effort and resources required with the ™

dimensionality (number of degrees of freedom) of the system

whether a spectral (basis set expansion) or grid technique iswhere r%, are the equilibrium Cartesian coordinates in the

employed. In the spectral approach the evaluation of the principal axis system.

multidimensional integrals required in computing the potential ~ \ve have implemented the above approach for calculating

contribution to the Hamiltonian matrix elements is very time- yqyiprational energy levels of polyatomic molecules at various

consuming and barely feasible even for tetraatomic molecules. jevels of approximation in a new code called MULTIMODE.

For a grid representation of the Hamiltonian, on the order of Thjs code can perform vibrational self-consistent field (VSCF)

10° (or higher) points could be required for a tetraatomic cajculations and two types of configuration interaction (Cl)

molecule. calculations using the hierarchical representation of the potential,
Thus to make such calculations tractable for polyatomic for j > 0. Molecular rotation can be treated exactly using the

molecules we have advocated the use of the following hierarchi- method of Whitehead and Har#hor approximately using the
cal representation of the potential expressed in terms of mass~4giabatic rotation approximatior?®

scaled normal modés In the VSCF approach the vibrational wave function is

assumed to be a “Hartree product” of one-mode functions

V(QuQz--Qu) = Y VI(Q) + Y VPQ.Q) + $9(Q) known as “modals™
T 1 !

Zﬁ@@w+ Vid(Q,QQeQ) + - (3) veer N
u i WS Qe Q) = [ #V(Q) ®)

where VY(Q) is given by a cut through the potential along
which only the coordinat€); is nonzero,\/i(jz)(Qi,Qj) is simi- Variational optimization of the modals to minimize the energy
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yields (for theJ = 0 Watson Hamiltonian) the following set of TABLE 1: Properties of Stationary Points for HCO, —

coupled integrodifferential VSCF equations H + CO;
HCO, H-+-CO, H+CO,
N N
i ; N . energy (eV) 0 0.70 0.15
[T+ q_| ¢gl)(Qi)|V + T I_l ¢2|)(Qi)D_ Egl)]ff’gl)(QO =0 energy (cm?) 0 5635 1193
I = Reh (a0) 2.09 3.82 o
l=1,..,N (9) Reo.co (30) 2.40, 2.40 2.27,2.27 2.19,2.19
Onco (deg) 117.9 99.0
; ) ; ; Ooco (deg) 124.1 161.9 180.0
‘é"hgre‘:/ is ann-mode representation of the potential< 1, NM frequencies549, 1009, 1057, 404i, 254, 420, 743, 1351,
, 3, 4), T is the Coriolis coupling operator, anfl is the (cm-Y) 1449 1019 3108 575, 1149, 2152 2384
Cartesian kinetic energy operator for modé the Watson
Hamiltonian.

element to form complete rovibrational Hamiltonian matrix
"elements. The rovibrational Hamiltonian is then diagonalized
using a Givens method to obtain the rovibrational energies.
Further details of these procedures including analytical expres-
sions for the nonzero pure rotational matrix elements have been
given elsewheré® The “adiabatic rotation approximatiof®,

an efficient approximate treatment of rotation, can also be done
in MULTIMODE, and we present limited results using this
approximation and compare them to the exact ones below.

L The potential used in this study is the latest version of the
converged ground state VSCF 1-mode Hamiltonians (analogousHCOZ surface developed by Schatz and co-work&rghis
to converged one-electron Fock operators but without exchange, : :
- I rf i n a many- xpansion where th -an
terms) collectively referred to as the VSCF Hamiltonian is surface is based on a many-body expansio ere the two- and

. . . . S three-body terms come from known potential surfaces for HCO,
obtained. Excited eigenstates of this VSCF Hamiltonian, known HO,, and CQ and the four-body terms were determined from
as virtual states, can be generated and used as a basis for

) S . : o & fit of ab initio data. HCQ@occurs as a local minimum on this
configuration interaction procedure to obtain variational results surface along one of two minimum energy pathways connecting
which converge to exact results (for the chos_en representation, . 511 =0 and H+ CO, asymptotes. However, due to a
of the potential). Since the members of this basis form an rather large barrier to formation of HGQfrom OH -+ CO)

. I~ — ,
orthonormallset, a stand.ard eigenvalue probleiff C EC, this pathway is not expected to be significant at thermal energies.
results and is solved using standard software. This type of ClI However, the objective of this study is not a complete
procedure which we term “VCI” is the one used in obtaining descripti(;n of the full OH+ CO— H + CO, system. Instead
the “CI” results of section IIl, [MULTIMODE is also capable : y :

f verformi Cl calculati - basis of true SCF stat we focus on the HC®— H + CO;, step as a typical tetraatomic
0 hPehr ormll?gl atica cura |?jn using "’Il as'st?lb';gfe_ ES(? ates system for which a realistic potential energy surface is available,
V_V (')C rre]su g!n ?hgenerallze e|§]_en}/a l:ﬁ pIgCF tat % th as indicated by the semiquantitative agreement between dynam-
_r ’theri 65 (leo;/et_r e:]p n:f]‘ mc(llonrn t? Sar(nasf]tnd be ics calculations on this surface and experiment. We then
prese 4= 0) calculations, the atrix was generated by investigate the differences that arise between applications of
fixing the TOTA'.‘ quanta of mode excitations in the virtual separable harmonic RRKM theory and nonseparable RRKM
statei %f_tq% k;]a3|s to be less than or equal to a maximum Valuetheory to this “model” reaction. For completeness, Table 1 gives
Mmax = 0 here. . . the geometries, energetics, and normal mode frequencies of

The application of MULTIMODE to a transition state is HCO,, the H+-CO transition state, and the # CO, products
straightforward, since in this case one of the normal modes (Enerigies there are referenced tc; the H@SNIMuUM taken a;s
corresponds to an _|mag|r_1ary-frequency, reaction Foor.d'm.itezero.) It is worth noting that the value of the imaginary “reaction
mode. If that mode is eliminated, the resulting Hamiltonian is

. B i - coordinate” frequency at the saddle point in this fit is 404iém
one representing the bou.nd states of the transition state. Thesubstantially different from that in earlier versions of this surface
construction and diagonalization of the Hamiltonian k3 7

modes using MULTIODE then proceeds as usial,and e (35) #1260, o) and o e ab o estmate (1147,
non;eparable qua_mtlged states of a transition state can be[his frequency may significantly affect the importance of
obtained. An application of MULTIMODE to the calculation . . :

. - unneling for this reaction.
of the quantized nonseparable states of the transition state oft
the OH+ H; reaction has already been ddfie.

In calculations with] > 0, the MULTIMODE code utilizes
the exact WhiteheagHandy implementation of Watson’s A. J = 0. In separable RRKM theory, the quantitibi(E)
rovibrational kinetic energy operator for nonlinear molecéfes. andp(E) are obtained using (separable) normal mode harmonic
For a givenJ value, (2 + 1) “vibrational” calculations are  energies. For the HCOminimum and the H-CO, transition
carried out for each of the §2+ 1) pairs of the quantum  state, we have determined the normal mode frequencies and
numbers (K,K.) to form the (3 + 1) diagonal blocks of the  eigenvectors by diagonalization of the matrix of Cartesian
rovibrational Hamiltonian matrix, and then the remaining potential energy second derivatives (evaluated numerically using
nonzero blocks are filled in appropriately. In doing so we use a standard central difference formula). These frequencies are
the same VClI vibrational basis for each K block multiplied by given in Table 1 and the corresponding eigenvectors are
the appropriate combination of symmetric top rotational func- illustrated in Figures 1 and 2, for HGOand H--CO;,
tions. Since our vibrational basis is the same for all K blocks, respectively. These normal mode frequencies were used to
we need to evaluate the matrix elements as functions of thegenerate harmonic spectra which were used to determine
vibrational coordinates only once and then repeatedly multiply Nyo(E) and Nﬁo (E) for HCO, and the H--CO, transition
each matrix element by the appropriate pure rotational matrix state, respectively, by direct count. In the energy range ap-

These equations are solved iteratively starting with zero-order
normal-mode, harmonic oscillator wave functions as initial
“guesses” for the modals. For tlle= 0 results discussed in
section 1ll, the set of equations (9) was solved for the SCF
ground state{n} = {0}, until the corresponding eigenvalues
from successive iterations had converged to within 0.01cm
(For both HCQ and the transition state this criterion was
satisfied in three iterations.)

In addition, at the end of the VSCF calculation a set of

IIl. Results and Discussion
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Figure 1. Normal mode eigenvectors for HGO
Figure 2. Normal mode eigenvectors for the HCO; transition state.
proximately 3000 cm! above thresholdNyo(E) was fit to a

. 1 vi -1
cubic polynomial. [Our findings were that in all the cases des- TABLE 2: Low-Lying Energy Levels (cm ) of HCO;

cribed in this paper the “goodness” of cubic polynomial fits to  Viv2vsvavsve  4-MR® 3-MR? 3-MR® 3-MR°
Nuo(E) and the nonseparab(E) (described later below) sur- ZPE 4673.4 4672.1 4672.8 4672.7
passed that of power law fits as measured by the closeness of 100000 414.41 413.46 413.15 413.06
the linear correlation coefficient to unity.] The derivative of this 200000 773.85 771.43 770.17 769.64
cubic fit was performed to obtain an analytical expression for gégggg ﬁgg:gs 12(5)2'_23 1%3%36 1%32:23
pro(E). 110000 1203.1 1197.8 1195.6 1194.3
To obtain anharmonic nonseparable values NYE) and 000100 1284.9 1282.7 1281.9 1281.8
N¥(E) the MULTIMODE code was used to generate large 210000 1475.1 1471.6 1459.8 1452.5
numbers of energy levels for HG@nd the H--CO, transition 400000 1508.1 1501.0 1490.5 1483.8
state u_sir_lg 3-mo<_3|e and 4-mode representations of the potential. (1) g 8 (1J 8 8 iggi:g igg:g igéi:g 1223:3
The primitive basis sets used to generate the VSCF virtual states ggo0010 1801.4 1798.0 1797.3 1797.3
employed in the VCI calculations for HGQypically consisted 310000 1848.3 1841.5 1820.2 1805.3
of 12—16 functions for normal modes-B and of 9-13 500000 1907.8 1904.8 1882.9 1868.6
functions for normal modes—46. In the case of H-CO,, the 88(1)883 iggg-g iggg-g igg?-g gg;g
primitive basis sets consisted of 15 functions for normal modes ;55900 19365 1930.3 1914.6 1903.4
1 and 2 and typically 810 (although 15 were employed in 200100 1964.7 1958.5 1950.0 1946.2
one calculation) functions for normal modes® The largest 010100 2081.0 2067.8 2064.2 2062.6
4-MR calculations for HC® correspond tamax = 8, which 100010 2181.9 2176.7 2175.6 2175.2
results in a CI matrix of order 3003; the largest 3-MR 220000 2253.8 2246.4 2214.2 2189.7
calculations for HCQcorrespond tomax= 10 and a Cl matrix ‘11 é 2 8 8 8 %ggg‘g gggi"i gg%g'g g;ggg
of order 8008. For the H-CO;, calculations the largest value VSCE ZPE 4688.0 4687.1 4687.9 4686.1

of nmaxused, 8, results in a Cl matrix of order 1287. The smaller
values ofnmax and of the number of primitive basis functions
used for the H-CO, calculations are justified by the fact that
our RRKM calculations are limited to energies no more than general effect of the inclusion of the additional terms in a 4-MR
3000 cmt above the zero point energy (ZPE) level of the of the potential for this system is to slightly raise the energy
transition state. (This level of excitation though is nearly 6500 levels. In general, the agreement between these two calculations
cmt above the ZPE of HCO) with identical bases is good, with most levels agreeing to within
The results of these VCI calculations are shown in Table 2 10 cnt ! (which is small compared to the average level spacing).
for some of the low-lying states of HGOA comparison of the Those 4-MR results represent our largest calculation for HCO
first two columns (of energies) in Table 2 indicates that the and took about 51 h of central processing unit (CPU) time

aNmax = 8, dimension ofHYC' = 3003.° nnax = 9, dimension of
HVC! = 5005.°€ Nmax = 10, dimension oHVC' = 8008.
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on an SGI Indigo 2 with a MIPS R8000 processor. The TABLE 3: Low-Lying Energy Levels (cm~1) of H---CO,

corresponding 3-MR calculation required just pteh of CPU V1VavavaVs 4-MR? 4-MR® 4-MRC 3-MR®
time on the same machlng. In light of the con5|derably greater ZPE 25233 2503.3 25233 25231
computational effort required and the rather modest improve- 19590 365.28 365.24 365.22 364.95
ments offered by the 4-MR calculations, we limited our larger 00100 568.42 568.26 568.18 567.56
VCI calculations (max = 9,10) for HCQ to those using the 20000 761.64 761.46 761.39 760.91
3-MR of the potential. The larger of these two 3-MR calculations 01000 840.39 840.34 840.33 840.14
required about 22 h of CPU time. Most levels appear to be 10100 930.97 930.43 930.18 928.62
I o 00200 1123.7 1122.2 1121.2 1119.1
converged to within about 15 crh (and many exhibit much 00010 11556 11553 11551 11546
better convergence). As our ultimate aim is for a reasonable 30000 1171.3 1170.0 1169.8 1169.1
estimate of the density of states for Hg@bove the thres- 11000 1225.8 1225.7 1225.6 1225.1
hold for formation of H+ CO, and not for spectroscopic ggigg iigg-? ﬁgg; ﬁgg-g 143132'?1
accuracy, we feel that the level of convergence of these results 10200 14881 14833 14811 1476.4
Is sufficient. 10010 1537.4 15367 15364 15355
One major conclusion that we can reach by examination of 40000 1596.7 1589.1 1587.3 1586.4
the results in Table 2 and of the normal mode frequencies for 21000 1634.9 1633.9 1633.7 1632.8
HCO, given in Table 1 is that anharmonicity and intermode 00300 1668.9 1653.5 1645.5 1637.7
. . . . 00110 1679.3 1677.9 1677.2 1675.6
coupling are important in HC§ even at relatively low levels 02000 17055 1705.0 17047 17045
of excitation. All of the MULTIMODE calculations give a ZPE 30100 1747.1 1738.9 1736.0 1733.2
in the range of 46714674 cnt!, while the harmonic NM ZPE 11100 1814.4 1812.6 1812.2 1809.9
is 4545.6 cm?, a difference of over 125 cm. A greater 20200 1898.6 1888.6 1883.2 1877.8
appreciation of the importance of these two effects is gained Sggig iggg-? 1823-3 iggé-g iggé?
by comparison between the MULTIMODE and NM fundamen-  \,5cF 7pg 2528.1 2528.1 2528 1 2528.0

tal excitation energies which on average deviate by 442'cm v ] v

_ f eV A o : _ . .
corresponding to an average relative deviation of about 30%. _ ™ 6, T”;er(‘j_s'on oH ;4332-_ i 7, dimension oH
The differences are most pronounced for normal modes 3 and™ - Mmax = G, dimension o o )

6. In the former case, the nonseparable excitation energy is 250
nearly twice the NM excitation energy (1900 versus 1057%m : ]
respectively). The mode 6 nonseparable excitation energy is 200 b | —MULTIMODE 3
substantially lower (about 1200 c®) than its NM counterpart. : Harmonic NM ]
These two effects can be largely (but not exclusively) attributed 150 & .

to “diagonal” anharmonicity, as indicated by results of 1-MR
calculations for HCQ (which include no intermode coupling),
which yield fundamental excitation energies of 2069.5 and
2340.2 cn! for modes 3 and 6, respectively. The sizable
differences between these 1-MR (separable anharmonic) results 0
and the 3-MR results indicate that intermode coupling is
substantial. Fundamental excitation energies calculated using a
1-MR (which includes diagonal anharmonicity but not intermode
coupling) differ on average from the nonseparable excitation
energies by 202 cm, indicating clearly that, even at these low
levels of excitation, intermode coupling is significant in HCO
From these results it should be obvious that inclusiobath energy for mode 5 not shown in Table 3 is 2219.57&n
anharmonicity and intermode coupling into calculations of the However, the nonseparable excitation energy for mode 2 is
numbers and densities of states are crucial for accurate applicaessentially double the NM value (840.3 versus 420.2%gm
tions of RRKM theory in this system. (Most of this effect is the result of “diagonal” anharmonicity;
Several sets of 4-MR VCI results and our largest 3-MR VCI a 1-MR calculation gives a fundamental excitation energy for
results for the low-lying states of the-HCO; transition state  this mode of 822.0 crt.) A comparison between nonseparable
are given in Table 3. Comparison of the energies from the largestand 1-MR fundamental excitation energies for the-BO,
3-MR and 4-MR calculations shows the two sets of results to transition state shows that on average the two sets of results
be very close with the energies fomoststates differing by less ~ differ by only 13 cnr?, indicating that at these levels of
than 3 cm. As for HCO, the 4-MR energies are generally ~€xcitation diagonal anharmonicity is the dominant effect
slightly higher than the 3-MR energies. Comparison of the three neglected in a NM treatment of the transition state. This further
sets of 4-MR results (for different basis sets of virtual states) suggests that 1-MR results might provide a reasonable ap-
indicates that all of the energy levels shown are probably Proximation toN*(E) in this system.
converged to within 5 cit, with the first dozen lowest levels Given the excellent convergence of the 4-MR calculations
being Converged to within 1 crd. As for HCO,, the nonsepa- for H:--CO;, N*(E) was determined by direct count of the results
rable and NM zero point energies are substantially different, from our largestiimax= 8) 4-MR calculation. Figure 3 presents
with the NM ZPE about 250 cr below the nonseparable ZPE @ comparison between the nonsepardiiféE) and Njjo(E).
(2275 versus 2523 cm). The differences between the non- There are two notable differences between these two quantities.
separable and NM excitation energies are overall smaller thanFirst NﬁO(E) becomes nonzero about 120 chlower than
for HCO,. The average deviation between these two sets of doesN*(E), a result of the difference between the nonseparable
results for the five modes is 122 ci corresponding to an  and NM zero point energies described above. Second at all
average relative deviation of 17%. (The nonseparable excitationenergies shower'O(E) > N¥(E); in fact, at the highest energy

N* (E)

100 |

50 F

3600 4500 5400
E (cm™)

6300

Figure 3. Separable harmonic and nonseparable VCI sums of states
at the H--CQ; transition state fod = 0. In this and all subsequent
figures, E is the energy in excess of the Hg@ero-point energy.
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Figure 4. Separable harmonic, anharmonic fit, and nonseparable VCI

sums of states for HCCfor J = 0. Figure 5. Separable harmonic and nonseparable VCI microcanonical

rate constant&(E) for dissociation of HC@to form H+ CO, for J =

shown (about 6500 cm), the difference is nearly a factor of 0.

3. Thus a harmonic count appreciably overestimates the
numerator of the RRKM rate constant expression (eq 1) for this
reaction.

Because of the relatively high levels of excitation of the low-
frequency modes of HC possible at and beyond the reaction
threshold and because of the limitations on our basis sets
imposed by the computer memory available, we had some .
doubts as to the completeness of our spectrum for HatOve expression fop(E). . .
threshold. We decided to test the spectral completeness by Figure 5 shows the RRKM microcanonical rate conskgi]
modeling HCQ as a system of six separable anharmonic for HCO, = H + COQ; (J = 0) computed using both our
oscillators. Each oscillator was assumed to have a Biggoner MULTIMODE results and the separable harmonic NM results

+ ; .
spectrum with energy levels labeled by the vibrational quantum for p(E) andN'(E). As might ha_ve been ant|.C|pated from the
numberu;. comments above, the harmonic threshold is about 120'cm

lower, and at all energies, the harmonic results exceed the

1 1\2 nonseparable results, by more than a factor of 4 at the highest

E,=c+ ai(Ui + 5) + bi(Ui + E) (10) energy considered. Figure 5 dramatically emphasizes one of the
major conclusions of this paper: that we must go beyond the

The parametera, b, andg, for each oscillator were determined  Usu@l harmonic NM approximation if we hope to achieve
by optimizing the fit of eq 10 to MULTIMODE (coupled) results ~ duantitative accuracy using RRKM theory.

for a progression of single-mode excitation energy levels. A AS this reaction involves the breaking of a weak & bond,
direct count procedure was then used to generate an independert Would be expected that the reaction coordinate motion would
anharmonic oscillator spectrum and the corresponding “anhar-€ntail primarily separation of the H atom from the center-of-
monic fit” to the sum of stateNa{E). In Figure 4 we show a ~ Mass of C_:Q. This is confirmed in Flgu_re 21 which shows th_at
comparison of the anharmonic fit, harmonic normal mode, and the imaginary-frequency NM approximation to the reaction
nonseparable MULTIMODE results fod(E). The first thing coord|r_1ate consists prlman_ly of this motlon,_p_lus bend|r_19 motion
to notice is that the MULTIMODE-based results are in rather that will bring the CQ moiety of the transition state into the
close agreement with the anharmonic fit over the whole energy characteristic collinear geometry of the g@roduct. Due to
range of interest. In the energy range up to 5000 Grwhere the significance of hydrogen motion alqng the reaction coor-
we are confident that the spectrum we have calculated is dinate, we would expect that tunneling effects might be
complete, the anharmonic fit is typically lower than the important below the classm_al threshold f_or this reaction. As
nonseparable value M(E) by no more than 5%. This might Mlller has notedz,7.the only simpleway to mplude tunngllng
have been anticipated as a result of intermode coupling which into RRKM theory involves the further dynamical approximation
is only indirectly built into the anharmonic fit. As the energy is of separability of the reaction coord_mate from the other degrees
increased beyond 5000 ci these two curves cross. We feel Of freedom. In such an approximate separable treatment,
that this behavior indicates a slight incompleteness of our tunneling effects are taken into account by replacing the
spectrum, probably on the order of 10% missing levels or less Heaviside step functions in the sum ofistates (eg 2) by one-
at the highest energy shown. The most striking feature of Figure dimensional tunneling probabilitieB(E—e.), wheree, are the

4 is that in the energy regime beyond threshold (above 3500 honseparable energy levels of the transition state. In the classical
cm™1) the harmonic NM approximation faX(E), Nuo(E), is limit P(E—ei) — h(E—ei) and RRKM theory without tunnel-
noticeably smaller than the nonseparable resuliNi@), by as ing is recovered.

much as a factor of 1.5 at the high end of the energy range. [If To gain some insight into the significance of tunneling in
our conjecture about the incompleteness of the computedthis reaction, we have incorporated such one-dimensional
nonseparable spectrum is correct, the discrepancy between théunneling probabilities into our nonseparable RRKM calcula-
true number of states amdlo(E) is even greater than indicated tions. We have represented the potential along the reaction
in the figure.] Thus the HC@system seems to show the typical coordinate as a generalized Eckart potefftiasing parameters
molecular behavior, i.e., the separable harmonic number (andconsistent with the ground state vibrationally adiabatic effective
density) of states is less than the coupled anharmonic numberpotential for the system. In this case the “RRKM plus tunneling”
(and density) of state®. Thus a harmonic NM approximation  approximations td\*(E) will reduce in the classical limit to
noticeably underestimate$E) in the denominator of the RRKM  the RRKM results without tunneling. The Eckart potential is

rate constant expression (eq 1). For exampl&,=at5000 cnt?!
(about midway through the reactive energy rangg)(E) =
0.1093/cm! while the nonseparable value pfE) is 0.1909/
cmL. For the RRKM calculations reported below, we have fit
our largest 3-MR results for the sum of statd(&) to a cubic
polynomial and differentiated this fit to obtain an analytical
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Figure 6. Nonseparable VCI microcanonical rate constd(E for
HCO, — H + CO;, dissociation including separable Eckart tunneling
correction forJ = 0. Short dashed vertical line indicates classical
threshold energy.

characterized by three parameteyg:.andVy, the barrier heights

in the forward and reverse directions, respectively, apdhe
absolute value of the imaginary barrier frequency, which is
related to the potential curvature at the top of the barrier. The
tunneling probability for this barrier can be evaluated analyti-
cally ag’

P(E) = s;n_ta;)smhb (11)
sinhz(T) + cosif ¢
where
a— 4 VE TV,

o Ao, [Vo—l/2 + V1—1/2]

Aot E+V,
hoy [v, 12+ v, ¥
c— VoVs _1
(hw,)? 16

and wheree’ = 0 at the top of the barriek, andV; are simply

Christoffel and Bowman

reaction in the high pressure limit. The TST theory expression
for this rate constant is

E Q*ﬂ e E*/kgT
h QM

where Q¥(T) and Q(T) are the partition functions of the
transition state and the Ht CO, reactants, respectivel§g is

the Boltzmann constant, arf is the threshold energy on the
ground state vibrationally adiabatic potential, i.e., the energy
difference between the ZPE of the transition state and the ZPE
of the CQ reactant. As we have noted above, the separable
harmonic approximation underestimates the ZPE of the H
CO; transition state by about 250 ¢ The separable harmonic
approximationoverestimateshe CQ ZPE by on the order of

50 cntl. The net result is that the separable harmonic
approximation predicts a threshold energy about 300'dawer

than a nonseparable treatment. At 300 K this difference in
threshold energies alone would cause the separable harmonic
approximation to overestimat&.{T) by a factor of 4.2.
Additionally since N*(E) from the separable approximation
increases much more rapidly with energy than the nonseparable
result for N*(E) (as seen in Figure 3), we can expect that the
separable approximation t@*(T) will generally exceed the
accurate nonseparable value. Further if ;C&hows typical
molecular behavior, the separable approximation will underes-
timate the value of)(T). These two effects will increase the
discrepancy between the separable harmonic approximation to
kedT) and the accurate nonseparable resultkfafT).

B. J > 0. Inclusion of rotation into a quantum problem greatly
increases the computational resources required for solving that
problem, since the number of relevant internal states grows like
(2J + 1) compared to thd = 0 case. As a result, our> 0
calculations have been rather limited particularly for H@@h
an additional vibrational degree of freedom and for which we
need to consider much greater internal energies as compared to
the H--CO; transition state. For the HCO; transition state
we have been able to easily perform 3-MR.x = 8 calculations
including an exact treatment of rotation fbr= 1, 5, 10 (using
just over 100 MB of memory and less th& h of CPUtime).
However, our single 3-MR calculation for HGQvith Npmax =

KedT) = (12)

the forward and reverse barrier heights along the ground state9, J = |, using an exact treatment of rotation required just over

vibrationally adiabatic barrier. The exact valuegfappropriate

for this reaction is an unresolved issue. The Bradi8ghatz
version of the potenti&f gives a value of 404 cri, which is
substantially different from the original ab initio estimate of
1147 cntl. Thus we have performed two sets of “RRKM plus
tunneling” calculations corresponding to these two very different
values ofwy. Figure 6 shows our results for the microcanonical
rate constank(E) using our nonseparable results fdE) and
N¥(E) and including this approximate separable treatment of

tunneling. Obviously at energies above the classical threshold,

tunneling effects quickly become inconsequential. From Figure

400 MB of memory and slightly more than 25 h of CPU time.
Computational limitations dictate that the most feasible
treatment of rotational effects will be an approximate one,
preferably one that makes maximum use of our limited amount
of data based on an exact treatment of rotation. The exact
calculations (within a givem-MR of the potential; in all cases
belown = 3) yield rovibrational energies which can be labeled
by the usual spectroscopic quantum numbérsindK.. Both
HCO, and the H--CO, transition state are near prolate sym-
metric tops; the asymmetry splittings are relatively smallJor
= 1: less than 0.05 cni for all but one state of H-CO, and

6 it is clear that, below threshold, tunneling can produce rather less than 0.1 cm for all but 15 of over 600 accessible

sizable dissociation rates. This is particularly truedgr= 1147
cm™1, as would be expected, since larger valueswgfcor-
respond to greater curvature and hence, for fixeédndV,, a
narrower potential barrier. Also worth noting is the logarithmic
scale of Figure 6; the predictions for the two valuespfliffer

by orders of magnitude just 500 cbelow the classical

threshold. This underscores the sensitivity of tunneling correc-

vibrational states of HC@with none of these splittings greater
than 0.2 cm?. The equilibrium geometry rigid rotor constants
Ae, Be, andCe are 3.105, 0.420, and 0.370 chrespectively,

for HCO,, and 3.445, 0.373, and 0.337 chrespectively, for
the H--CO, transition state. These constants correspond to
values of Ray’s asymmetry parameter-69.963 and—0.977,
respectively for HC@ and the transition state, quite close to

tions to properties of the potential energy surface in the saddlethe prolate symmetric top limit of 1. Thus we have chosen to

point region.
Finally it is worth noting the implications of our results for
a TST calculation of the rate of the Hf CO, recombination

model each of these species as a prolate symmetric top. The
differences between th&= 0 andJ = 1 “exact” (within the
same 3-MR of the potential and using the same value of
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Figure 7. Distribution of state-specific rotational consta#sandB Figure 8. Distribution of state-specific rotational constarisandB;
for HCO,. For comparison, the equilibrium geometry rotor constants for the H--CO; transition state. For comparison, the equilibrium rotor
Ae, Be, andCe are 3.105, 0.420, and 0.370 chrespectively. constants\, Be, andC, are 3.445, 0.373, and 0.337 cinrespectively.

J> 1, i.e., they are true constants as for a semirigid body. We
further assume that rotation and vibration are approximately
separable so that the rovibrational energy levels are given by

A} =BJJ+ 1)+ (A — B)K, (13) D =ED,+ AEQ (14)

Nmay) €nergies for a vibrational statewere fit to the standard
prolate symmetric top expression

to determine for each vibrational state effective rotational WhereAES)K is given by eq 13. For a specified value of total
constantsA; and B;. Use of the preceding rotational energy angular momentund, an approximate rovibrational spectrum
expression assumes that to a good approximation rotation ands generated by evaluation of eq 14 for each of th&+21)

vibration are nearly separable. values ofK, for each of the availabl@ = 0 vibrational states
Using the fitting procedure described above, constanand i

Bi were determined for 700 vibrational states of HCGDd for For the H--CO;, transition state, we have been able to test

100 vibrational states of the-HCO, transition state. (These the quality of these approximate spectrajcr 5, 10. ForJ =

totals include 61 states for HG@nd 23 states for H-CO, 5, we compared the 1078 lowest rovibrational energies from

which are beyond the range of energies for which we report the fit described above to exact results (working for consistency

RRKM rate constants.) For HGQhe average over statesf within the same 3-MR of the potential and using data obtained

A denotedA[) is 3.413 cml, and the average value &, from MULTIMODE calculations using the same valuerifay,

Bi[] is 0.382 cnl. The mean deviations from these average 8). The average deviation between corresponding levels is 0.252

values are 0.225 cnd and 0.007 cm? for A; and B;, respec- cm™L. Over 90% of the energy levels agree to within 1.0ém

tively. For the H--CO, transition statéA;[= 3.436 cnt! and and none differ by more than 5.5 cf A similar comparison
[Bi(= 0.353 cntl. The corresponding mean deviations are 0.165 was made for the lowest 1932 rovibrational levels Jor 10.

and 0.002 cm! for A; and B;, respectively. The averages are Here the average deviation between corresponding levels is
very close to the equilibrium geometry values with the exception 0.775 cnt®. Over 90% of the levels agree to within 2.5 thn

of [AOfor HCO,, which differs from the equilibrium geometry  and none disagree by more than 6.5¢énforJ = 10 we also
value by about 10%. Figures 7 and 8 show histogram repre- performed a calculation of the rovibrational levels using the
sentations of the distributions & and A values for HCQ “adiabatic rotation approximation”. The average deviation
and for the H--CO, transition state, respectively. These between the adiabatic and exact results for the same 1932 levels
histograms are based on all of the available data with the is 1.737 cmL. In this case over 90% of the levels agree to within

exception ofA; for HCO,, where a small number of values2% 4.5 cnt and none disagree by more than 9.5énThis level

of the total) lying outside the range of-% cm ! have been of agreement is quite acceptable for present purposes but
omitted. BothB; distributions are quite narrow; thg distribu- considerably weaker than that between exact results and the
tions are much broader, particularly the one for HG@hich approximate fit we have advocated above. The current ap-
exhibits rather long tails. proximation scheme proves superior to the adiabatic rotation

These sets ofA, and B; values can be used to construct approximation, presumably because in an indirect way, the state-
approximate rovibrational spectra (for both HE@nd the specific rotational constants incorporate the (weak) Coriolis
transition state) in the following manner. First we assume that coupling which is neglected in the “adiabatic rotation approx-
the state-specific rotational constants are independedtfaf imation”!%b
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Limitations of our computational resources precluded per-
forming such tests of the approximate rovibrational spectrum
for HCO,. The greater width of thé; andB; distributions for
HCO, (as compared to H-CO,) suggests that rotatien
vibration interactions may be stronger in He@an in the
transition state, and therefore, the approximate separable fit may
not be as accurate in this case. However, it is important to recall
the use to be made of these spectra, i.e., generation of an
estimate of the density of rovibrational states for fixkdand
therefore, they need not be of spectroscopic accuracy.

In studies of the dissociation of symmetric top molecules with
J > 0, a quantity of prime interest is tiieaveraged rate constant
(since except for small moleculds quantum numbers are
usually experimentally unresolved) given by

k(E,J) (sec™)
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Figure 9. Comparison of RRHO, MMSS, and MMAX-averaged
unimolecular rate constank¢E,J) for HCO, — H + CO, dissociation
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where in analogy to eq 1IN E — e:JVK] is the sum of = 2 F e
rovibrational states for the transition state with specifigd 210 E _ﬁm;;;:l#**
values up to energ¥ (measured relative to the reagent ZPE oL b
level) andp(E,J,K) is the J,K-specific density of rovibrational P T R T
states of the reagent. Summing oemwe obtaian(E), the 3000 4000 5000 6000 7000
sum of rovibrational states of the transition state with a specified E (em™)

J value up to energ¥, andpy(E), the density of rovibrational  Figure 10. Comparison of RRHO, MMSS, and MMA¥X-averaged
states of the reagent with a specified valuelddt energyE. unimolecular rate constank¢E,J) for HCO, — H + CO; dissociation
Accurate evaluation of these two quantities requires an accurateas a function of energy fof = 50.
determination of the rovibrational energy levels of the reactant yacquse to be consistent with ali= 1 calculations and our
molecule and of the transition state. ) fitting of A andB; we have used the results of a 3-MRax =

We have modeled the rovibrational spectrum in three ways g caiculation here to obtajoy(E), whereas the data of Figure 5
that are based on eq 14 and hence assumed an approximalgere ohtained using the results of a 3-Miw = 10 calculation
separation of rqtatlon and vibration. In two cases We have takengq, o(E). The greater value di(E,J=0) in Figure 9 is a direct
ES), to be derived from 3-MR results (for consistency) ob- reflection of the reduced value @h—oE) obtained from the
tained using MULTIMODE for both HC@and the H--CO, 3-MR npax= 9 results and used in these calculations. Thus the
transition state; in the third case, the standard RRKM expressiongiscrepancy between the RRHO results and the nonseparable
for E ., as a sum of separable harmonic NM energies has beenresults fork(E,J) is probably greater than reflected in Figure 9.
used. The two MULTIMODE-based models differ with respect The large gap between the RRHO and two sets of MM results
to the rotational constants used in generatjkﬁS'V)K. In the seen in Figure 9 (until the rapid falloff at large J) primarily
more detailed model denoted MMSS, state-specific rotational reflects the difference in vibrational spec(Eijio) between the
constants (obtained as described above) were used for alltwo models. Differences arising due to the different treatments
relevant vibrational states of the reagent and of the transition of rotation (AE; k() are much less significant. This conclusion
state. In the less detailed model denoted as MMAV, all is supported by the observation that the differences between
vibrational states of each species are assigned the correspondinghe two sets of MM-based results, one using state-specific
ensemble average valugsCand [B;L] In the standard RRKM  rotational constants (MMSS) and the other using a fixed pair
model denoted as RRHO, the rotational constants for all statesof average constants (MMAV) are minor (an order of magnitude
of each species are taken to be those determined at thesmaller than the difference of either with the RRHO results) by
equilibrium geometry of that species. comparison. The difference between these two sets of results is

These spectra were then used to genelNﬁ(E) and Ny(E) negligible untilJ exceeds 25. For lower energies than the one
for H---CO, and HCQ, respectively, by direct count. In the shown in Figure 9, the behavior of the three setk(BfJ) results
3000 cnt!range just above thé= 0 thresholdN,(E) for each are qualitatively similar, though as might be expected from
model was fit to a cubic polynomial for eadtvalue up toJ = Figure 5, the gap between the RRHO- and MM-based results
99, and these expressions were differentiated to obtain analyticalnarrows asE decreases.
quadratic polynomial expressions for thgE). These results Figure 10 show(E,J) versuskE for J = 50. For this value
were then used in eq 15 to obtdi(E,J) values for 0< J < 99 of J the reaction threshold has shifted upward approximately
and E approximately in the range of 356500 cnm. 900 cnt compared td = 0. As a result, at a fixed total energy

Typical results folk(E,J) are presented in Figures 9 and 10. E, k(E,J = 50) is substantially less th&(E,J = 0) for all three
Figure 9 show(E,J) versus] for an energy 3000 crt above models. Again most of the difference seen here between the
theJ = 0 threshold. The observant reader will note thatthe RRHO- and the MM-based results is attributable to the
= 0 MMSS and MMAV results in Figure 9 are about 10% differences in thd = 0 vibrational spectra used in these models.
higher than those shown in Figure 5. This difference arises In the energy range examined, the MMAV and MMSS results



Evaluation of RRKM Theory J. Phys. Chem. A, Vol. 103, No. 16, 1998029

10° pmrr T significant with increasing energy. As the reader may have
: ;xmmxmwxxm,m ] deduced from the qualitative similarity of the data in Figures 5
102 |k "“X%X . and 12, the data shown in those figures are qualitatively
~ E | o Mo Junneling T representative df(E,J) data for othed values as a function of
g 10" E |« Eckart 1147 3 the energy.
= 10° L ' ] IV. Summary and Conclusions
ol ‘3 We reported unimolecular dissociation rates for HCOH
10° | A + CO, for zero and nonzero total angular momentum, using a
F 3 nonseparable version of RRKM theory. The calculations of the
0 e e e L L density of states of the HGQOeactant and of the number of
0 20 40 60 80 100 states of the transition state were done using the code MUL-

J

Figure 11. Comparison of MMSS K-averaged unimolecular rate
constantk(E,J) for HCO, — H + CO; dissociation with and without
separable Eckart tunneling correction verdas an energy 3000 cm

TIMODE, and the main objective of these calculations was to
assess the accuracy of standard, separable RRKM theory. The
calculations for the nonseparable Hamiltonian using MULTI-

in excess of thel = 0 threshold. MODE were based on the exact Watson Hamiltonian, but with
a hierarchical mode representation of the full potential. Calcula-
10" 1 tions were done using 3- and 4-mode representations of the
I potential. The good agreement of the energies for these
10°F representations for HCQnd the H--CO; transition state gave
~ 10" [ us confidence in the accuracy of these calculations. Exact and
'§ o approximate calculations of rovibrational energy levels were
5 107 F also done for low values of the total angular momentlim
g 10° P The density of states of HGOvas obtained from an analytical
N * No Tunneling | § fit of the energy spectrum from our largesingx = 10) 3-MR
10°F N v Eckart 404i . calculation. This expression was then used with a direct count
e A Eckart 114711 3 of the nonseparable states of the transition state to obtain the

dissociation rate constant fdr= 0 over a range of total energies
3000 40005 (cm_1?ooo 6000 up to 3000 cm! above the classical dissociation threshold.
Figure 12. Comparison of MMSSK-averaged unimolecular rate Analogpus galculatlons were also done in the separable harmonic
constantk(E,J) for HCO, — H + CO, dissociation with and without apprOXImatlon. )
separable Eckart tunneling correction as a function of energy for One important difference between the nonseparable and
50. separable calculations was in thes 0 classical threshold energy
for dissociation. The classical threshold energy for dissociation,
show a slow divergence with increasing energy, a behavior i.e., the difference in the zero-point energies of the transition
typical for J values in excess of 25. state and of HCQ was found to be about 120 crhhigher in
We can incorporate tunneling effects into the calculation of the accurate nonseparable calculation than in the harmonic
k(E,J) using the same approximation of a separable Eckart separable one. This was due primarily to a large difference in
potential along the reaction coordinate as described earlier forthe transition state zero-point energies, with the nonseparable
the J = 0 case. Typical results fdk(E,J) using MMSS data calculation giving a ZPE about 250 cihigher than the one
and incorporating this approximate treatment of tunneling are from the separable harmonic calculation. This difference in
shown in Figures 11 and 12. In each figure results obtained in transition state zero-point energies combines with a separable
the absence of tunneling are compared to results obtainedharmonic overestimate of the G@eactant ZPE by about 50
including tunneling effects approximately using the twg cm~1 to produce a 300 cri difference between the separable
values as before, 404 and 1147 dmFigure 11 show%(E,J) harmonic and accurate nonseparable threshold energies for the
versusJ for a fixed energy identical to that used in Figure 9, H + CO, association reaction.
and Figure 12 showlgE,J) versuskE for J = 50 (the same value Additionally it was found that HC® exhibited typical
used in Figure 10). The most notable effect of tunneling at fixed molecular behavior in that the separable harmonic approximation
energy seen in Figure 11 is to extend the rangé wdlues for significantly underestimated the density of vibrational states at
which dissociation can occur with an appreciable rate. For the energies above the dissociation threshold. This effect, combined
case of the narrower barriewg§ = 1147 cnt1) even below the with an overestimate of the sum of vibrational states of the
maximum classically allowed value df(J = 91) a modest but  transition state in the separable harmonic approximation (and
discernible enhancement k(E,J) due to tunneling can be seen the threshold effect noted above), produced separable harmonic
in this figure. For the broader barriem{ = 404) on the scale  dissociation rate constants fdr= 0 that differed by as much
of this figure, the effects of tunneling are almost imperceptible as a factor of four from accurate nonseparable rate constants in
in the range of classically accessilleThe data in Figure 11  the energy range considered.
are representative for energies well above the ZPE level of the Calculations of the unimolecular rate constant Jayreater
transition state. Of course, at lower energies (near or below thethan zero were presented. One used state-specific rotational
ZPE level of the transition state) tunneling becomes the constants. These were obtained by fitting the difference in
dominant mode of dissociation for all The most striking energies for exacl = 1 results relative td = 0 results to the
features of Figure 12 are the significant rates of tunneling- expression for a prolate symmetric top (which was shown to
induced dissociation, even several hundred wavenumbers belowbe appropriate for both HGOand H--CO;). Another, more
the classical threshold. Just above the classical threshold thereapproximate, calculation used average rotational constants and
are some modest enhancements to the rate due to tunnelingvas found to be in reasonably good agreement with the more
contributions as well, but these appear to be becoming lessaccurate one, based on state-specific rotational constants.
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