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We report variational calculations of a large number of vibrational states of HCO2 and the H‚‚‚CO2 transition
state forJ ) 0 using the code MULTIMODE and a realistic six degree-of-freedom potential energy surface.
State-dependent rotational constants for both species are calculated for the same sets of vibrational states
from exact rotation/vibration calculations forJ ) 1. The results of these variational calculations are used to
obtain RRKM rate constants for the decomposition of HCO2 to form H + CO2. Comparison is made between
these nonseparable RRKM results and those obtained from a standard, separable harmonic oscillator/rigid
rotor evaluation of the RRKM rate constant expression. Significant differences between the nonseparable
and separable results are found.

I. Introduction

Despite advances in computer technology in the past 2
decades, accurate quantum calculations of unimolecular and
bimolecular reaction rate constants in systems with four or more
atoms remain largely outside the realm of feasibility.1,2 For such
systems one must rely upon classical trajectory methods3 or
statistical theories, such as transition state theory (TST)4,5 or
RRKM theory,6 to estimate elementary rate constants. Central
to these statistical theories is an approximate calculation of the
cumulative reaction probability (CRP), denotedN(E) whereE
is the total energy. The CRP is defined as the sum of the state-
to-state reaction probabilities summed over all initial and final
states and it can be used to straightforwardly determine
microcanonical and canonical rate constants.7 In TST the exact
N(E) is approximated by the number of states of the transition
state with energy less than or equal toE. Thus the dynamics
calculation is replaced for a nonrotating N-atom system by a
state count of the (3N - 7)-dimensional “bound” states of the
transition state.

Routinely this state count is performed by invoking a further
approximation that the vibrational degrees-of-freedom of the
transition state are separable and harmonic. This form of TST
is referred to as separable TST (STST). Before the advent of
high-speed computing, this approach was defensible on the
grounds that it was the only feasible approach given the era’s
typical dearth of ab initio data for stable molecules and even
more so for transition states. However, now that chemically
accurate potential energy surfaces can be developed for triatomic
and tetraatomic systems, we must look beyond the standard
approach to state counting to include the effects of anharmo-
nicity and intermode coupling (i.e., nonseparability).

A limited amount of work has been done in the past 2 decades
beyond this conventional approach. Garrett, Truhlar, and co-
workers in a series of papers during the 1980s examined the

effect of incorporating anharmonicity effects within separable
oscillator models on TST rate constants for a series of A+ BC
reactions8 and for the OH+ H2

9 reaction. Recently Isaacsonl0

has generated a potential energy surface for the OH+ H2

reaction in the vicinity of the reaction path and then applied
second-order perturbation theory and the self-consistent field
configuration interaction (SCF-CI)11 method to a quartic force
field to obtain the anharmonic vibrational energy levels for the
bound degrees-of-freedom orthogonal to the reaction coordinate.
These levels, which include the effects of anharmonicity and
mode-mode coupling, in many cases deviated significantly
from their purely harmonic approximations. Miller and co-
workers have developed and applied (to several reactions
including the unimolecular decomposition of D2CO) a non-
separable semiclassical TST (SCTST) approach to calculating
N(E) within a second-order perturbative treatment of anharmo-
nicity for the determination of the good actions.12 In a related
development, Seideman and Miller have shown how the exact
CRP can be evaluated directly (i.e., without calculation of the
scattering matrix) using the normal coordinates of the transition
state, including the imaginary-frequency mode.13

For unimolecular reactions, TST is combined with a statistical
treatment of the energized reactant (based on the dynamical
assumption of rapid intramolecular vibrational energy redistribu-
tion (IVR) relative to the reaction rate) in RRKM (or quasi-
equilibrium) theory. RRKM theory gives a rate constant
expression (neglecting for now the role of rotations) of the
form14

whereF(E) is the density of vibrational states at the energyE
(measured relative to the reagent zero-point energy),Nq(E) is
the total number (sum) of vibrational states in the transition
state with energies not exceedingE and is given by
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with h(x) being the Heaviside step function and{εn
q} being the

set of transition state energy levels (measured relative to the
zero-point energy of the reagent), andσ is the reaction sym-
metry factor. Application of RRKM theory to a particular
reaction then involves, in addition to an approximate calculation
of the CRP, the calculation of the density of states of the
energized molecule at the relatively high energies typical of
molecular bond breaking. Thus, incorporation of the effects of
anharmonicity and intermode coupling into a calculation ofF-
(E) represents an even greater computational challenge than
incorporating these effects for the transition state. This need
for accurate densities of states to make RRKM theory quantita-
tive has long been recognized.5,6,15,16Hase, Schinke, and co-
workers recently determined essentially exact values (including
effects of both anharmonicity and intermode coupling) of
Nq(E) and F(E) for the decomposition of the nonrotating
triatomic HO2 radical.17

In this paper we apply nonseparable RRKM theory to the
unimolecular decomposition of the tetraatomic HCO2 radical
to form H + CO2, using a six degree-of-freedom potential18

and including effects of rotation. Our calculations of the
nonseparable bound states of the energized reactant and the
transition state were done using the code MULTIMODE.19 A
summary of the theory and computational methods implemented
within MULTIMODE is given in the next section along with
the details of the utilization of its output for the current RRKM
calculations. Section III presents our results with an emphasis
on comparing them to the results obtained by application of
separable RRKM theory (i.e., separable harmonic vibrations and
a rigid rotator) to this reaction. In the final section we summarize
our important findings and conclusions.

II. Theory and Computational Details

An exact evaluation of the quantitiesNq(E) andF(E) used in
the RRKM calculation of the microcanonical rate constantk(E)
requires a knowledge of the exact energy levels of the energized
molecule and of the transition state species. Although the
computation of the “exact” bound states of triatomic molecules
has become almost routine,20 the corresponding calculation for
a polyatomic molecule (with four or more atoms) poses a
formidable computational challenge. Such eigenvalue determi-
nations are hampered by an essentially exponential scaling of
the computational effort and resources required with the
dimensionality (number of degrees of freedom) of the system
whether a spectral (basis set expansion) or grid technique is
employed. In the spectral approach the evaluation of the
multidimensional integrals required in computing the potential
contribution to the Hamiltonian matrix elements is very time-
consuming and barely feasible even for tetraatomic molecules.
For a grid representation of the Hamiltonian, on the order of
106 (or higher) points could be required for a tetraatomic
molecule.

Thus to make such calculations tractable for polyatomic
molecules we have advocated the use of the following hierarchi-
cal representation of the potential expressed in terms of mass-
scaled normal modes19

where Vi
(1)(Qi) is given by a cut through the potential along

which only the coordinateQi is nonzero,Vij
(2)(Qi,Qj) is simi-

larly defined but now the two coordinatesQi andQj are nonzero,
etc. The one-mode representation (1-MR) of the potential
includes only the terms in the first sum above, the two-
mode representation (2-MR) retains the terms in the first and
second sums above, etc. Our applications to date19 have been
limited (by computational resources) to explicit coupling of
a maximum of four modes. As a result, the calculations
described in this paper involve at most four-dimensional
quadratures. Although the method is not exact, we have found
it to be capable of producing quite accurate results for tetra-
atomic molecules.19c (Note by way of contrast that in the
standard separable TST/RRKM approach the potential is taken
to be a harmonic 1-MR.)

The representation of the potential given by eq 3 can be
incorporated into the full Watson normal-mode Hamiltonian
(appropriate for nonlinear molecules) for which the kinetic
energy operator is (in atomic units,p )1)21

where ĴR, Ĵâ are components of the total angular momentum
operator,π̂R, π̂â are components of the vibrational angular
momentum operator, andµ is the inverse of the moment of
inertia tensor. Explicitly,

where theúk,l
R are the Coriolis coupling constants, related to the

vectors of the normal coordinates by

The mass-scaled normal coordinatesQk are related to the
Cartesian coordinatesrRi by

where rRi
0 are the equilibrium Cartesian coordinates in the

principal axis system.
We have implemented the above approach for calculating

rovibrational energy levels of polyatomic molecules at various
levels of approximation in a new code called MULTIMODE.19

This code can perform vibrational self-consistent field (VSCF)
calculations and two types of configuration interaction (CI)
calculations using the hierarchical representation of the potential,
for J > 0. Molecular rotation can be treated exactly using the
method of Whitehead and Handy22 or approximately using the
“adiabatic rotation approximation”.23

In the VSCF approach24 the vibrational wave function is
assumed to be a “Hartree product” of one-mode functions
φni

(i)(Qi) known as “modals”:

Variational optimization of the modals to minimize the energy

V(Q1,Q2,...,QN) ) ∑
i

Vi
(1)(Qi) + ∑

ij

Vij
(2)(Qi,Qj) +

∑
ijk

Vijk
(3)(Qi,Qj,Qk) + ∑

ijkl

Vijkl
(4)(Qi,Qj,Qk,Ql) + ... (3)

T̂ )
1

2
∑
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R ) εRâγ ∑
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Qk ) ∑
i

lRi,kmi
1/2(rRi - rRi

0 ) (7)
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VSCF (Q1,Q2,...,QN) ) ∏
i)1

N

φni

(i)(Qi) (8)
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yields (for theJ ) 0 Watson Hamiltonian) the following set of
coupled integrodifferential VSCF equations

whereV is ann-mode representation of the potential (n ) 1,
2, 3, 4), Tc is the Coriolis coupling operator, andTl is the
Cartesian kinetic energy operator for model in the Watson
Hamiltonian.

These equations are solved iteratively starting with zero-order,
normal-mode, harmonic oscillator wave functions as initial
“guesses” for the modals. For theJ ) 0 results discussed in
section III, the set of equations (9) was solved for the SCF
ground state,{ni} ) {0}, until the corresponding eigenvalues
from successive iterations had converged to within 0.01 cm-1.
(For both HCO2 and the transition state this criterion was
satisfied in three iterations.)

In addition, at the end of the VSCF calculation a set of
converged ground state VSCF 1-mode Hamiltonians (analogous
to converged one-electron Fock operators but without exchange
terms) collectively referred to as the VSCF Hamiltonian is
obtained. Excited eigenstates of this VSCF Hamiltonian, known
as virtual states, can be generated and used as a basis for a
configuration interaction procedure to obtain variational results
which converge to exact results (for the chosen representation
of the potential). Since the members of this basis form an
orthonormal set, a standard eigenvalue problem,HVCIC ) EC,
results and is solved using standard software. This type of CI
procedure which we term “VCI” is the one used in obtaining
the “CI” results of section III, [MULTIMODE is also capable
of performing a CI calculation using a basis of true SCF states
which results in a generalized eigenvalue problem (HSCF- ES)C
) 0, whereS is the overlap matrix for the SCF states.] In the
present (J ) 0) calculations, the CI matrix was generated by
fixing the TOTAL quanta of mode excitations in the virtual
states of the basis to be less than or equal to a maximum value,
nmax ) 6-10 here.

The application of MULTIMODE to a transition state is
straightforward, since in this case one of the normal modes
corresponds to an imaginary-frequency, reaction coordinate
mode. If that mode is eliminated, the resulting Hamiltonian is
one representing the “bound” states of the transition state. The
construction and diagonalization of the Hamiltonian in 3N - 7
modes using MULTIMODE then proceeds as usual, and the
nonseparable quantized states of a transition state can be
obtained. An application of MULTIMODE to the calculation
of the quantized nonseparable states of the transition state of
the OH+ H2 reaction has already been done.25

In calculations withJ > 0, the MULTIMODE code utilizes
the exact Whitehead-Handy implementation of Watson’s
rovibrational kinetic energy operator for nonlinear molecules.22

For a givenJ value, (2J + 1) “vibrational” calculations are
carried out for each of the (2J + 1) pairs of the quantum
numbers (Ka,Kc) to form the (2J + 1) diagonal blocks of the
rovibrational Hamiltonian matrix, and then the remaining
nonzero blocks are filled in appropriately. In doing so we use
the same VCI vibrational basis for each K block multiplied by
the appropriate combination of symmetric top rotational func-
tions. Since our vibrational basis is the same for all K blocks,
we need to evaluate the matrix elements as functions of the
vibrational coordinates only once and then repeatedly multiply
each matrix element by the appropriate pure rotational matrix

element to form complete rovibrational Hamiltonian matrix
elements. The rovibrational Hamiltonian is then diagonalized
using a Givens method to obtain the rovibrational energies.
Further details of these procedures including analytical expres-
sions for the nonzero pure rotational matrix elements have been
given elsewhere.19c The “adiabatic rotation approximation”,l9b

an efficient approximate treatment of rotation, can also be done
in MULTIMODE, and we present limited results using this
approximation and compare them to the exact ones below.

The potential used in this study is the latest version of the
HCO2 surface developed by Schatz and co-workers.18 This
surface is based on a many-body expansion where the two- and
three-body terms come from known potential surfaces for HCO,
HO2, and CO2 and the four-body terms were determined from
a fit of ab initio data. HCO2 occurs as a local minimum on this
surface along one of two minimum energy pathways connecting
the OH + CO and H+ CO2 asymptotes. However, due to a
rather large barrier to formation of HCO2 (from OH + CO),
this pathway is not expected to be significant at thermal energies.
However, the objective of this study is not a complete
description of the full OH+ CO f H + CO2 system. Instead
we focus on the HCO2 f H + CO2 step as a typical tetraatomic
system for which a realistic potential energy surface is available,
as indicated by the semiquantitative agreement between dynam-
ics calculations on this surface and experiment. We then
investigate the differences that arise between applications of
separable harmonic RRKM theory and nonseparable RRKM
theory to this “model” reaction. For completeness, Table 1 gives
the geometries, energetics, and normal mode frequencies of
HCO2, the H‚‚‚CO2 transition state, and the H+ CO2 products.
(Energies there are referenced to the HCO2 minimum taken as
zero.) It is worth noting that the value of the imaginary “reaction
coordinate” frequency at the saddle point in this fit is 404i cm-1,
substantially different from that in earlier versions of this surface
(239i and 280i cm-1) and from the ab initio estimate (1147i
cm-1). As we will see in section 3 below, the magnitude of
this frequency may significantly affect the importance of
tunneling for this reaction.

III. Results and Discussion

A. J ) 0. In separable RRKM theory, the quantitiesNq(E)
andF(E) are obtained using (separable) normal mode harmonic
energies. For the HCO2 minimum and the H‚‚‚CO2 transition
state, we have determined the normal mode frequencies and
eigenvectors by diagonalization of the matrix of Cartesian
potential energy second derivatives (evaluated numerically using
a standard central difference formula). These frequencies are
given in Table 1 and the corresponding eigenvectors are
illustrated in Figures 1 and 2, for HCO2 and H‚‚‚CO2,
respectively. These normal mode frequencies were used to
generate harmonic spectra which were used to determine
NHO(E) and NHO

q (E) for HCO2 and the H‚‚‚CO2 transition
state, respectively, by direct count. In the energy range ap-

TABLE 1: Properties of Stationary Points for HCO 2 f
H + CO2

HCO2 H‚‚‚CO2 H + CO2

energy (eV) 0 0.70 0.15
energy (cm-1) 0 5635 1193
RCH (ao) 2.09 3.82 ∞
RCO,CO′ (ao) 2.40, 2.40 2.27, 2.27 2.19, 2.19
θHCO (deg) 117.9 99.0
θOCO′ (deg) 124.1 161.9 180.0
NM frequencies

(cm-1)
549, 1009, 1057,

1449, 1919, 3108
404i, 254, 420,

575, 1149, 2152
743, 1351,

2384

[Tl + 〈∏
i*l

N

φni

(i)(Qi)|V + Tc|∏
i*l

N

φni

(i)(Qi)〉 - εnl

(l)]φnl

(l)(Ql) ) 0

l ) 1, ...,N (9)

3022 J. Phys. Chem. A, Vol. 103, No. 16, 1999 Christoffel and Bowman



proximately 3000 cm-1 above thresholdNHO(E) was fit to a
cubic polynomial. [Our findings were that in all the cases des-
cribed in this paper the “goodness” of cubic polynomial fits to
NHO(E) and the nonseparableN(E) (described later below) sur-
passed that of power law fits as measured by the closeness of
the linear correlation coefficient to unity.] The derivative of this
cubic fit was performed to obtain an analytical expression for
FHO(E).

To obtain anharmonic nonseparable values forN(E) and
Nq(E) the MULTIMODE code was used to generate large
numbers of energy levels for HCO2 and the H‚‚‚CO2 transition
state using 3-mode and 4-mode representations of the potential.
The primitive basis sets used to generate the VSCF virtual states
employed in the VCI calculations for HCO2 typically consisted
of 12-16 functions for normal modes 1-3 and of 9-13
functions for normal modes 4-6. In the case of H‚‚‚CO2, the
primitive basis sets consisted of 15 functions for normal modes
1 and 2 and typically 8-10 (although 15 were employed in
one calculation) functions for normal modes 3-5. The largest
4-MR calculations for HCO2 correspond tonmax ) 8, which
results in a CI matrix of order 3003; the largest 3-MR
calculations for HCO2 correspond tonmax ) 10 and a CI matrix
of order 8008. For the H‚‚‚CO2 calculations the largest value
of nmax used, 8, results in a CI matrix of order 1287. The smaller
values ofnmax and of the number of primitive basis functions
used for the H‚‚‚CO2 calculations are justified by the fact that
our RRKM calculations are limited to energies no more than
3000 cm-1 above the zero point energy (ZPE) level of the
transition state. (This level of excitation though is nearly 6500
cm-1 above the ZPE of HCO2.)

The results of these VCI calculations are shown in Table 2
for some of the low-lying states of HCO2. A comparison of the
first two columns (of energies) in Table 2 indicates that the

general effect of the inclusion of the additional terms in a 4-MR
of the potential for this system is to slightly raise the energy
levels. In general, the agreement between these two calculations
with identical bases is good, with most levels agreeing to within
10 cm-1 (which is small compared to the average level spacing).
Those 4-MR results represent our largest calculation for HCO2

and took about 51 h of central processing unit (CPU) time

Figure 1. Normal mode eigenvectors for HCO2.
Figure 2. Normal mode eigenvectors for the H‚‚‚CO2 transition state.

TABLE 2: Low-Lying Energy Levels (cm-1) of HCO2

ν1 ν2 ν3 ν4 ν5 ν6 4-MRa 3-MRa 3-MRb 3-MRc

ZPE 4673.4 4672.1 4672.8 4672.7
1 0 0 0 0 0 414.41 413.46 413.15 413.06
2 0 0 0 0 0 773.85 771.43 770.17 769.64
0 1 0 0 0 0 859.66 856.83 856.56 856.33
3 0 0 0 0 0 1107.2 1103.5 1098.2 1095.4
1 1 0 0 0 0 1203.1 1197.8 1195.6 1194.3
0 0 0 1 0 0 1284.9 1282.7 1281.9 1281.8
2 1 0 0 0 0 1475.1 1471.6 1459.8 1452.5
4 0 0 0 0 0 1508.1 1501.0 1490.5 1483.8
1 0 0 1 0 0 1631.4 1627.9 1624.8 1623.4
0 2 0 0 0 0 1664.9 1657.9 1654.8 1653.0
0 0 0 0 1 0 1801.4 1798.0 1797.3 1797.3
3 1 0 0 0 0 1848.3 1841.5 1820.2 1805.3
5 0 0 0 0 0 1907.8 1904.8 1882.9 1868.6
0 0 0 0 0 1 1903.2 1920.2 1879.4 1873.5
0 0 1 0 0 0 1919.2 1900.2 1897.5 1897.3
1 2 0 0 0 0 1936.5 1930.3 1914.6 1903.4
2 0 0 1 0 0 1964.7 1958.5 1950.0 1946.2
0 1 0 1 0 0 2081.0 2067.8 2064.2 2062.6
1 0 0 0 1 0 2181.9 2176.7 2175.6 2175.2
2 2 0 0 0 0 2253.8 2246.4 2214.2 2189.7
4 1 0 0 0 0 2260.7 2254.9 2218.6 2196.0
1 0 1 0 0 0 2290.6 2281.4 2276.9 2276.2
VSCF ZPE 4688.0 4687.1 4687.9 4686.1

a nmax ) 8, dimension ofHVCI ) 3003.b nmax ) 9, dimension of
HVCI ) 5005.c nmax ) 10, dimension ofHVCI ) 8008.
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on an SGI Indigo 2 with a MIPS R8000 processor. The
corresponding 3-MR calculation required just over 1 h of CPU
time on the same machine. In light of the considerably greater
computational effort required and the rather modest improve-
ments offered by the 4-MR calculations, we limited our larger
VCI calculations (nmax ) 9,10) for HCO2 to those using the
3-MR of the potential. The larger of these two 3-MR calculations
required about 22 h of CPU time. Most levels appear to be
converged to within about 15 cm-1 (and many exhibit much
better convergence). As our ultimate aim is for a reasonable
estimate of the density of states for HCO2 above the thres-
hold for formation of H + CO2 and not for spectroscopic
accuracy, we feel that the level of convergence of these results
is sufficient.

One major conclusion that we can reach by examination of
the results in Table 2 and of the normal mode frequencies for
HCO2 given in Table 1 is that anharmonicity and intermode
coupling are important in HCO2, even at relatively low levels
of excitation. All of the MULTIMODE calculations give a ZPE
in the range of 4671-4674 cm-1, while the harmonic NM ZPE
is 4545.6 cm-1, a difference of over 125 cm-1. A greater
appreciation of the importance of these two effects is gained
by comparison between the MULTIMODE and NM fundamen-
tal excitation energies which on average deviate by 442 cm-1,
corresponding to an average relative deviation of about 30%.
The differences are most pronounced for normal modes 3 and
6. In the former case, the nonseparable excitation energy is
nearly twice the NM excitation energy (1900 versus 1057 cm-1,
respectively). The mode 6 nonseparable excitation energy is
substantially lower (about 1200 cm-1) than its NM counterpart.
These two effects can be largely (but not exclusively) attributed
to “diagonal” anharmonicity, as indicated by results of 1-MR
calculations for HCO2 (which include no intermode coupling),
which yield fundamental excitation energies of 2069.5 and
2340.2 cm-1 for modes 3 and 6, respectively. The sizable
differences between these 1-MR (separable anharmonic) results
and the 3-MR results indicate that intermode coupling is
substantial. Fundamental excitation energies calculated using a
1-MR (which includes diagonal anharmonicity but not intermode
coupling) differ on average from the nonseparable excitation
energies by 202 cm-1, indicating clearly that, even at these low
levels of excitation, intermode coupling is significant in HCO2.
From these results it should be obvious that inclusion ofboth
anharmonicity and intermode coupling into calculations of the
numbers and densities of states are crucial for accurate applica-
tions of RRKM theory in this system.

Several sets of 4-MR VCI results and our largest 3-MR VCI
results for the low-lying states of the H‚‚‚CO2 transition state
are given in Table 3. Comparison of the energies from the largest
3-MR and 4-MR calculations shows the two sets of results to
be very close with the energies formoststates differing by less
than 3 cm-1. As for HCO2, the 4-MR energies are generally
slightly higher than the 3-MR energies. Comparison of the three
sets of 4-MR results (for different basis sets of virtual states)
indicates that all of the energy levels shown are probably
converged to within 5 cm-1, with the first dozen lowest levels
being converged to within 1 cm-1. As for HCO2, the nonsepa-
rable and NM zero point energies are substantially different,
with the NM ZPE about 250 cm-1 below the nonseparable ZPE
(2275 versus 2523 cm-1). The differences between the non-
separable and NM excitation energies are overall smaller than
for HCO2. The average deviation between these two sets of
results for the five modes is 122 cm-1, corresponding to an
average relative deviation of 17%. (The nonseparable excitation

energy for mode 5 not shown in Table 3 is 2219.5 cm-1.)
However, the nonseparable excitation energy for mode 2 is
essentially double the NM value (840.3 versus 420.2 cm-1).
(Most of this effect is the result of “diagonal” anharmonicity;
a 1-MR calculation gives a fundamental excitation energy for
this mode of 822.0 cm-1.) A comparison between nonseparable
and 1-MR fundamental excitation energies for the H‚‚‚CO2

transition state shows that on average the two sets of results
differ by only 13 cm-1, indicating that at these levels of
excitation diagonal anharmonicity is the dominant effect
neglected in a NM treatment of the transition state. This further
suggests that 1-MR results might provide a reasonable ap-
proximation toNq(E) in this system.

Given the excellent convergence of the 4-MR calculations
for H‚‚‚CO2, Nq(E) was determined by direct count of the results
from our largest (nmax ) 8) 4-MR calculation. Figure 3 presents
a comparison between the nonseparableNq(E) and NHO

q (E).
There are two notable differences between these two quantities.
First NHO

q (E) becomes nonzero about 120 cm-1 lower than
doesNq(E), a result of the difference between the nonseparable
and NM zero point energies described above. Second at all
energies shown,NHO

q (E) g Nq(E); in fact, at the highest energy

TABLE 3: Low-Lying Energy Levels (cm-1) of H‚‚‚CO2

ν1 ν2 ν3 ν4 ν5 4-MRa 4-MRb 4-MRc 3-MRc

ZPE 2523.3 2523.3 2523.3 2523.1
1 0 0 0 0 365.28 365.24 365.22 364.95
0 0 1 0 0 568.42 568.26 568.18 567.56
2 0 0 0 0 761.64 761.46 761.39 760.91
0 1 0 0 0 840.39 840.34 840.33 840.14
1 0 1 0 0 930.97 930.43 930.18 928.62
0 0 2 0 0 1123.7 1122.2 1121.2 1119.1
0 0 0 1 0 1155.6 1155.3 1155.1 1154.6
3 0 0 0 0 1171.3 1170.0 1169.8 1169.1
1 1 0 0 0 1225.8 1225.7 1225.6 1225.1
2 0 1 0 0 1330.8 1328.7 1328.0 1325.9
0 1 1 0 0 1428.1 1427.7 1427.5 1426.4
1 0 2 0 0 1488.1 1483.3 1481.1 1476.4
1 0 0 1 0 1537.4 1536.7 1536.4 1535.5
4 0 0 0 0 1596.7 1589.1 1587.3 1586.4
2 1 0 0 0 1634.9 1633.9 1633.7 1632.8
0 0 3 0 0 1668.9 1653.5 1645.5 1637.7
0 0 1 1 0 1679.3 1677.9 1677.2 1675.6
0 2 0 0 0 1705.5 1705.0 1704.7 1704.5
3 0 1 0 0 1747.1 1738.9 1736.0 1733.2
1 1 1 0 0 1814.4 1812.6 1812.2 1809.9
2 0 2 0 0 1898.6 1888.6 1883.2 1877.8
2 0 0 1 0 1945.8 1943.4 1942.6 1941.5
0 1 0 1 0 1968.7 1967.3 1966.8 1965.7
VSCF ZPE 2528.1 2528.1 2528.1 2528.0

a nmax ) 6, dimension ofHVCI ) 462. b nmax ) 7, dimension ofHVCI

) 792. c nmax ) 8, dimension ofHVCI ) 1287.

Figure 3. Separable harmonic and nonseparable VCI sums of states
at the H‚‚‚CO2 transition state forJ ) 0. In this and all subsequent
figures,E is the energy in excess of the HCO2 zero-point energy.
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shown (about 6500 cm-1), the difference is nearly a factor of
3. Thus a harmonic count appreciably overestimates the
numerator of the RRKM rate constant expression (eq 1) for this
reaction.

Because of the relatively high levels of excitation of the low-
frequency modes of HCO2 possible at and beyond the reaction
threshold and because of the limitations on our basis sets
imposed by the computer memory available, we had some
doubts as to the completeness of our spectrum for HCO2 above
threshold. We decided to test the spectral completeness by
modeling HCO2 as a system of six separable anharmonic
oscillators. Each oscillator was assumed to have a Birge-Sponer
spectrum with energy levels labeled by the vibrational quantum
numberVi.

The parametersai, bi, andci for each oscillator were determined
by optimizing the fit of eq 10 to MULTIMODE (coupled) results
for a progression of single-mode excitation energy levels. A
direct count procedure was then used to generate an independent
anharmonic oscillator spectrum and the corresponding “anhar-
monic fit” to the sum of statesNanh(E). In Figure 4 we show a
comparison of the anharmonic fit, harmonic normal mode, and
nonseparable MULTIMODE results forN(E). The first thing
to notice is that the MULTIMODE-based results are in rather
close agreement with the anharmonic fit over the whole energy
range of interest. In the energy range up to 5000 cm-1, where
we are confident that the spectrum we have calculated is
complete, the anharmonic fit is typically lower than the
nonseparable value ofN(E) by no more than 5%. This might
have been anticipated as a result of intermode coupling which
is only indirectly built into the anharmonic fit. As the energy is
increased beyond 5000 cm-1, these two curves cross. We feel
that this behavior indicates a slight incompleteness of our
spectrum, probably on the order of 10% missing levels or less
at the highest energy shown. The most striking feature of Figure
4 is that in the energy regime beyond threshold (above 3500
cm-1) the harmonic NM approximation forN(E), NHO(E), is
noticeably smaller than the nonseparable result forN(E), by as
much as a factor of 1.5 at the high end of the energy range. [If
our conjecture about the incompleteness of the computed
nonseparable spectrum is correct, the discrepancy between the
true number of states andNHO(E) is even greater than indicated
in the figure.] Thus the HCO2 system seems to show the typical
molecular behavior, i.e., the separable harmonic number (and
density) of states is less than the coupled anharmonic number
(and density) of states.26 Thus a harmonic NM approximation
noticeably underestimatesF(E) in the denominator of the RRKM

rate constant expression (eq 1). For example, atE ) 5000 cm-1

(about midway through the reactive energy range)FHO(E) )
0.1093/cm-1 while the nonseparable value ofF(E) is 0.1909/
cm-1. For the RRKM calculations reported below, we have fit
our largest 3-MR results for the sum of statesN(E) to a cubic
polynomial and differentiated this fit to obtain an analytical
expression forF(E).

Figure 5 shows the RRKM microcanonical rate constantk(E)
for HCO2 f H + CO2 (J ) 0) computed using both our
MULTIMODE results and the separable harmonic NM results
for F(E) andNq(E). As might have been anticipated from the
comments above, the harmonic threshold is about 120 cm-1

lower, and at all energies, the harmonic results exceed the
nonseparable results, by more than a factor of 4 at the highest
energy considered. Figure 5 dramatically emphasizes one of the
major conclusions of this paper: that we must go beyond the
usual harmonic NM approximation if we hope to achieve
quantitative accuracy using RRKM theory.

As this reaction involves the breaking of a weak C-H bond,
it would be expected that the reaction coordinate motion would
entail primarily separation of the H atom from the center-of-
mass of CO2. This is confirmed in Figure 2, which shows that
the imaginary-frequency NM approximation to the reaction
coordinate consists primarily of this motion, plus bending motion
that will bring the CO2 moiety of the transition state into the
characteristic collinear geometry of the CO2 product. Due to
the significance of hydrogen motion along the reaction coor-
dinate, we would expect that tunneling effects might be
important below the classical threshold for this reaction. As
Miller has noted,27 the only simpleway to include tunneling
into RRKM theory involves the further dynamical approximation
of separability of the reaction coordinate from the other degrees
of freedom. In such an approximate separable treatment,
tunneling effects are taken into account by replacing the
Heaviside step functions in the sum of states (eq 2) by one-
dimensional tunneling probabilities,P(E-εn

q), whereεn
q are the

nonseparable energy levels of the transition state. In the classical
limit P(E-εn

q) f h(E-εn
q) and RRKM theory without tunnel-

ing is recovered.
To gain some insight into the significance of tunneling in

this reaction, we have incorporated such one-dimensional
tunneling probabilities into our nonseparable RRKM calcula-
tions. We have represented the potential along the reaction
coordinate as a generalized Eckart potential28 using parameters
consistent with the ground state vibrationally adiabatic effective
potential for the system. In this case the “RRKM plus tunneling”
approximations toNq(E) will reduce in the classical limit to
the RRKM results without tunneling. The Eckart potential is

Figure 4. Separable harmonic, anharmonic fit, and nonseparable VCI
sums of states for HCO2 for J ) 0.

EVi
) ci + ai(Vi + 1

2) + bi(Vi + 1
2)2

(10)

Figure 5. Separable harmonic and nonseparable VCI microcanonical
rate constantsk(E) for dissociation of HCO2 to form H + CO2 for J )
0.
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characterized by three parameters:V0 andV1, the barrier heights
in the forward and reverse directions, respectively, andωb, the
absolute value of the imaginary barrier frequency, which is
related to the potential curvature at the top of the barrier. The
tunneling probability for this barrier can be evaluated analyti-
cally as27

where

and whereE′ ) 0 at the top of the barrier.V0 andV1 are simply
the forward and reverse barrier heights along the ground state
vibrationally adiabatic barrier. The exact value ofωb appropriate
for this reaction is an unresolved issue. The Bradley-Schatz
version of the potential18 gives a value of 404 cm-1, which is
substantially different from the original ab initio estimate of
1147 cm-1. Thus we have performed two sets of “RRKM plus
tunneling” calculations corresponding to these two very different
values ofωb. Figure 6 shows our results for the microcanonical
rate constantk(E) using our nonseparable results forF(E) and
Nq(E) and including this approximate separable treatment of
tunneling. Obviously at energies above the classical threshold,
tunneling effects quickly become inconsequential. From Figure
6 it is clear that, below threshold, tunneling can produce rather
sizable dissociation rates. This is particularly true forωb ) 1147
cm-1, as would be expected, since larger values ofωb cor-
respond to greater curvature and hence, for fixedV0 andV1, a
narrower potential barrier. Also worth noting is the logarithmic
scale of Figure 6; the predictions for the two values ofωb differ
by orders of magnitude just 500 cm-1 below the classical
threshold. This underscores the sensitivity of tunneling correc-
tions to properties of the potential energy surface in the saddle
point region.

Finally it is worth noting the implications of our results for
a TST calculation of the rate of the H+ CO2 recombination

reaction in the high pressure limit. The TST theory expression
for this rate constant is

where Qq(T) and Qr(T) are the partition functions of the
transition state and the H+ CO2 reactants, respectively,kB is
the Boltzmann constant, andEq is the threshold energy on the
ground state vibrationally adiabatic potential, i.e., the energy
difference between the ZPE of the transition state and the ZPE
of the CO2 reactant. As we have noted above, the separable
harmonic approximation underestimates the ZPE of the H‚‚‚
CO2 transition state by about 250 cm-1. The separable harmonic
approximationoVerestimatesthe CO2 ZPE by on the order of
50 cm-1. The net result is that the separable harmonic
approximation predicts a threshold energy about 300 cm-1 lower
than a nonseparable treatment. At 300 K this difference in
threshold energies alone would cause the separable harmonic
approximation to overestimatekrec(T) by a factor of 4.2.
Additionally since Nq(E) from the separable approximation
increases much more rapidly with energy than the nonseparable
result forNq(E) (as seen in Figure 3), we can expect that the
separable approximation toQq(T) will generally exceed the
accurate nonseparable value. Further if CO2 shows typical
molecular behavior, the separable approximation will underes-
timate the value ofQr(T). These two effects will increase the
discrepancy between the separable harmonic approximation to
krec(T) and the accurate nonseparable result forkrec(T).

B. J > 0. Inclusion of rotation into a quantum problem greatly
increases the computational resources required for solving that
problem, since the number of relevant internal states grows like
(2J + 1) compared to theJ ) 0 case. As a result, ourJ > 0
calculations have been rather limited particularly for HCO2 with
an additional vibrational degree of freedom and for which we
need to consider much greater internal energies as compared to
the H‚‚‚CO2 transition state. For the H‚‚‚CO2 transition state
we have been able to easily perform 3-MRnmax ) 8 calculations
including an exact treatment of rotation forJ ) 1, 5, 10 (using
just over 100 MB of memory and less than 5 h of CPUtime).
However, our single 3-MR calculation for HCO2 with nmax )
9, J ) l, using an exact treatment of rotation required just over
400 MB of memory and slightly more than 25 h of CPU time.

Computational limitations dictate that the most feasible
treatment of rotational effects will be an approximate one,
preferably one that makes maximum use of our limited amount
of data based on an exact treatment of rotation. The exact
calculations (within a givenn-MR of the potential; in all cases
belown ) 3) yield rovibrational energies which can be labeled
by the usual spectroscopic quantum numbersKa andKc. Both
HCO2 and the H‚‚‚CO2 transition state are near prolate sym-
metric tops; the asymmetry splittings are relatively small forJ
) 1: less than 0.05 cm-1 for all but one state of H‚‚‚CO2 and
less than 0.1 cm-1 for all but 15 of over 600 accessible
vibrational states of HCO2, with none of these splittings greater
than 0.2 cm-1. The equilibrium geometry rigid rotor constants
Ae, Be, andCe are 3.105, 0.420, and 0.370 cm-1, respectively,
for HCO2, and 3.445, 0.373, and 0.337 cm-1, respectively, for
the H‚‚‚CO2 transition state. These constants correspond to
values of Ray’s asymmetry parameter of-0.963 and-0.977,
respectively for HCO2 and the transition state, quite close to
the prolate symmetric top limit of-1. Thus we have chosen to
model each of these species as a prolate symmetric top. The
differences between theJ ) 0 andJ ) 1 “exact” (within the
same 3-MR of the potential and using the same value of

Figure 6. Nonseparable VCI microcanonical rate constantsk(E) for
HCO2 f H + CO2 dissociation including separable Eckart tunneling
correction forJ ) 0. Short dashed vertical line indicates classical
threshold energy.

P(E′) ) sinha sinhb

sinh2(a + b
2 ) + cosh2 c

(11)

a ) 4π
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b ) 4π
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-1/2 + V1
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- 1
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kBT

h
Qq(T)

Qr(T)
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nmax) energies for a vibrational statei were fit to the standard
prolate symmetric top expression

to determine for each vibrational state effective rotational
constantsAi and Bi. Use of the preceding rotational energy
expression assumes that to a good approximation rotation and
vibration are nearly separable.

Using the fitting procedure described above, constantsAi and
Bi were determined for 700 vibrational states of HCO2 and for
100 vibrational states of the H‚‚‚CO2 transition state. (These
totals include 61 states for HCO2 and 23 states for H‚‚‚CO2

which are beyond the range of energies for which we report
RRKM rate constants.) For HCO2 the average over statesi of
Ai denoted〈Ai〉, is 3.413 cm-1, and the average value ofBi,
〈Bi〉, is 0.382 cm-1. The mean deviations from these average
values are 0.225 cm-1 and 0.007 cm-1 for Ai and Bi, respec-
tively. For the H‚‚‚CO2 transition state〈Ai〉 ) 3.436 cm-1 and
〈Bi〉 ) 0.353 cm-1. The corresponding mean deviations are 0.165
and 0.002 cm-1 for Ai and Bi, respectively. The averages are
very close to the equilibrium geometry values with the exception
of 〈Ai〉 for HCO2, which differs from the equilibrium geometry
value by about 10%. Figures 7 and 8 show histogram repre-
sentations of the distributions ofBi and Ai values for HCO2

and for the H‚‚‚CO2 transition state, respectively. These
histograms are based on all of the available data with the
exception ofAi for HCO2, where a small number of values (≈2%
of the total) lying outside the range of 2-5 cm-1 have been
omitted. BothBi distributions are quite narrow; theAi distribu-
tions are much broader, particularly the one for HCO2 which
exhibits rather long tails.

These sets ofAi and Bi values can be used to construct
approximate rovibrational spectra (for both HCO2 and the
transition state) in the following manner. First we assume that
the state-specific rotational constants are independent ofJ for

J > 1; i.e., they are true constants as for a semirigid body. We
further assume that rotation and vibration are approximately
separable so that the rovibrational energy levels are given by

where∆EJ,Ka

(i) is given by eq 13. For a specified value of total
angular momentumJ, an approximate rovibrational spectrum
is generated by evaluation of eq 14 for each of the (2J + 1)
values ofKa for each of the availableJ ) 0 vibrational states
i.

For the H‚‚‚CO2 transition state, we have been able to test
the quality of these approximate spectra forJ ) 5, 10. ForJ )
5, we compared the 1078 lowest rovibrational energies from
the fit described above to exact results (working for consistency
within the same 3-MR of the potential and using data obtained
from MULTIMODE calculations using the same value ofnmax,
8). The average deviation between corresponding levels is 0.252
cm-1. Over 90% of the energy levels agree to within 1.0 cm-1

and none differ by more than 5.5 cm-1. A similar comparison
was made for the lowest 1932 rovibrational levels forJ ) 10.
Here the average deviation between corresponding levels is
0.775 cm-1. Over 90% of the levels agree to within 2.5 cm-1

and none disagree by more than 6.5 cm-1. For J ) 10 we also
performed a calculation of the rovibrational levels using the
“adiabatic rotation approximation”. The average deviation
between the adiabatic and exact results for the same 1932 levels
is 1.737 cm-1. In this case over 90% of the levels agree to within
4.5 cm-1 and none disagree by more than 9.5 cm-1. This level
of agreement is quite acceptable for present purposes but
considerably weaker than that between exact results and the
approximate fit we have advocated above. The current ap-
proximation scheme proves superior to the adiabatic rotation
approximation, presumably because in an indirect way, the state-
specific rotational constants incorporate the (weak) Coriolis
coupling which is neglected in the “adiabatic rotation approx-
imation”.l9b

Figure 7. Distribution of state-specific rotational constantsAi andBi

for HCO2. For comparison, the equilibrium geometry rotor constants
Ae, Be, andCe are 3.105, 0.420, and 0.370 cm-1, respectively.

∆EJ,Ka

(i) ) BiJ(J + 1) + (Ai - Bi)Ka
2 (13)

Figure 8. Distribution of state-specific rotational constantsAi andBi

for the H‚‚‚CO2 transition state. For comparison, the equilibrium rotor
constantsAe, Be, andCe are 3.445, 0.373, and 0.337 cm-1, respectively.

EJ,Ka

(i) ) EJ)0
(i) + ∆EJ,Ka

(i) (14)
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Limitations of our computational resources precluded per-
forming such tests of the approximate rovibrational spectrum
for HCO2. The greater width of theAi andBi distributions for
HCO2 (as compared to H‚‚‚CO2) suggests that rotation-
vibration interactions may be stronger in HCO2 than in the
transition state, and therefore, the approximate separable fit may
not be as accurate in this case. However, it is important to recall
the use to be made of these spectra, i.e., generation of an
estimate of the density of rovibrational states for fixedJ, and
therefore, they need not be of spectroscopic accuracy.

In studies of the dissociation of symmetric top molecules with
J > 0, a quantity of prime interest is theK-averaged rate constant
(since except for small moleculesK quantum numbers are
usually experimentally unresolved) given by

where in analogy to eq 1,Nq[E - εn,J,K
q ] is the sum of

rovibrational states for the transition state with specifiedJ,K
values up to energyE (measured relative to the reagent ZPE
level) andF(E,J,K) is theJ,K-specific density of rovibrational
states of the reagent. Summing overK we obtainNJ

q(E), the
sum of rovibrational states of the transition state with a specified
J value up to energyE, andFJ(E), the density of rovibrational
states of the reagent with a specified value ofJ at energyE.
Accurate evaluation of these two quantities requires an accurate
determination of the rovibrational energy levels of the reactant
molecule and of the transition state.

We have modeled the rovibrational spectrum in three ways
that are based on eq 14 and hence assumed an approximate
separation of rotation and vibration. In two cases we have taken
EJ)0

(i) to be derived from 3-MR results (for consistency) ob-
tained using MULTIMODE for both HCO2 and the H‚‚‚CO2

transition state; in the third case, the standard RRKM expression
for EJ)0

(i) as a sum of separable harmonic NM energies has been
used. The two MULTIMODE-based models differ with respect
to the rotational constants used in generating∆EJ,Ka

(i) . In the
more detailed model denoted MMSS, state-specific rotational
constants (obtained as described above) were used for all
relevant vibrational states of the reagent and of the transition
state. In the less detailed model denoted as MMAV, all
vibrational states of each species are assigned the corresponding
ensemble average values〈Ai〉 and〈Bi〉. In the standard RRKM
model denoted as RRHO, the rotational constants for all states
of each species are taken to be those determined at the
equilibrium geometry of that species.

These spectra were then used to generateNJ
q(E) and NJ(E)

for H‚‚‚CO2 and HCO2, respectively, by direct count. In the
3000 cm-1 range just above theJ ) 0 threshold,NJ(E) for each
model was fit to a cubic polynomial for eachJ value up toJ )
99, and these expressions were differentiated to obtain analytical
quadratic polynomial expressions for theFJ(E). These results
were then used in eq 15 to obtaink(E,J) values for 0e J e 99
andE approximately in the range of 3500-6500 cm-1.

Typical results fork(E,J) are presented in Figures 9 and 10.
Figure 9 showsk(E,J) versusJ for an energy 3000 cm-1 above
the J ) 0 threshold. The observant reader will note that theJ
) 0 MMSS and MMAV results in Figure 9 are about 10%
higher than those shown in Figure 5. This difference arises

because to be consistent with ourJ ) 1 calculations and our
fitting of Ai andBi we have used the results of a 3-MRnmax )
9 calculation here to obtainFJ(E), whereas the data of Figure 5
were obtained using the results of a 3-MRnmax ) 10 calculation
for F(E). The greater value ofk(E,J)0) in Figure 9 is a direct
reflection of the reduced value ofFJ)0(E) obtained from the
3-MR nmax ) 9 results and used in these calculations. Thus the
discrepancy between the RRHO results and the nonseparable
results fork(E,J) is probably greater than reflected in Figure 9.
The large gap between the RRHO and two sets of MM results
seen in Figure 9 (until the rapid falloff at large J) primarily
reflects the difference in vibrational spectra(EJ)0

(i) ) between the
two models. Differences arising due to the different treatments
of rotation (∆EJ,Ka

(i)) are much less significant. This conclusion
is supported by the observation that the differences between
the two sets of MM-based results, one using state-specific
rotational constants (MMSS) and the other using a fixed pair
of average constants (MMAV) are minor (an order of magnitude
smaller than the difference of either with the RRHO results) by
comparison. The difference between these two sets of results is
negligible untilJ exceeds 25. For lower energies than the one
shown in Figure 9, the behavior of the three sets ofk(E,J) results
are qualitatively similar, though as might be expected from
Figure 5, the gap between the RRHO- and MM-based results
narrows asE decreases.

Figure 10 showsk(E,J) versusE for J ) 50. For this value
of J the reaction threshold has shifted upward approximately
900 cm-1 compared toJ ) 0. As a result, at a fixed total energy
E, k(E,J ) 50) is substantially less thank(E,J ) 0) for all three
models. Again most of the difference seen here between the
RRHO- and the MM-based results is attributable to the
differences in theJ ) 0 vibrational spectra used in these models.
In the energy range examined, the MMAV and MMSS results

k(E, J) )

∑
K)-J

J

Nq[E - εn,J,K
q ]

∑
K)-J

J

F(E,J,K)

t
NJ

q(E)

FJ(E)
(15)

Figure 9. Comparison of RRHO, MMSS, and MMAVK-averaged
unimolecular rate constantsk(E,J) for HCO2 f H + CO2 dissociation
versusJ for a fixed energy 3000 cm-1 above theJ ) 0 threshold.

Figure 10. Comparison of RRHO, MMSS, and MMAVK-averaged
unimolecular rate constantsk(E,J) for HCO2 f H + CO2 dissociation
as a function of energy forJ ) 50.
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show a slow divergence with increasing energy, a behavior
typical for J values in excess of 25.

We can incorporate tunneling effects into the calculation of
k(E,J) using the same approximation of a separable Eckart
potential along the reaction coordinate as described earlier for
the J ) 0 case. Typical results fork(E,J) using MMSS data
and incorporating this approximate treatment of tunneling are
shown in Figures 11 and 12. In each figure results obtained in
the absence of tunneling are compared to results obtained
including tunneling effects approximately using the twoωb

values as before, 404 and 1147 cm-1. Figure 11 showsk(E,J)
versusJ for a fixed energy identical to that used in Figure 9,
and Figure 12 showsk(E,J) versusE for J ) 50 (the same value
used in Figure 10). The most notable effect of tunneling at fixed
energy seen in Figure 11 is to extend the range ofJ values for
which dissociation can occur with an appreciable rate. For the
case of the narrower barrier (ωb ) l147 cm-1) even below the
maximum classically allowed value ofJ (J ) 91) a modest but
discernible enhancement ofk(E,J) due to tunneling can be seen
in this figure. For the broader barrier (ωb ) 404) on the scale
of this figure, the effects of tunneling are almost imperceptible
in the range of classically accessibleJ. The data in Figure 11
are representative for energies well above the ZPE level of the
transition state. Of course, at lower energies (near or below the
ZPE level of the transition state) tunneling becomes the
dominant mode of dissociation for allJ. The most striking
features of Figure 12 are the significant rates of tunneling-
induced dissociation, even several hundred wavenumbers below
the classical threshold. Just above the classical threshold there
are some modest enhancements to the rate due to tunneling
contributions as well, but these appear to be becoming less

significant with increasing energy. As the reader may have
deduced from the qualitative similarity of the data in Figures 5
and 12, the data shown in those figures are qualitatively
representative ofk(E,J) data for otherJ values as a function of
the energy.

IV. Summary and Conclusions

We reported unimolecular dissociation rates for HCO2 f H
+ CO2 for zero and nonzero total angular momentum, using a
nonseparable version of RRKM theory. The calculations of the
density of states of the HCO2 reactant and of the number of
states of the transition state were done using the code MUL-
TIMODE, and the main objective of these calculations was to
assess the accuracy of standard, separable RRKM theory. The
calculations for the nonseparable Hamiltonian using MULTI-
MODE were based on the exact Watson Hamiltonian, but with
a hierarchical mode representation of the full potential. Calcula-
tions were done using 3- and 4-mode representations of the
potential. The good agreement of the energies for these
representations for HCO2 and the H‚‚‚CO2 transition state gave
us confidence in the accuracy of these calculations. Exact and
approximate calculations of rovibrational energy levels were
also done for low values of the total angular momentumJ.

The density of states of HCO2 was obtained from an analytical
fit of the energy spectrum from our largest (nmax ) 10) 3-MR
calculation. This expression was then used with a direct count
of the nonseparable states of the transition state to obtain the
dissociation rate constant forJ ) 0 over a range of total energies
up to 3000 cm-1 above the classical dissociation threshold.
Analogous calculations were also done in the separable harmonic
approximation.

One important difference between the nonseparable and
separable calculations was in theJ ) 0 classical threshold energy
for dissociation. The classical threshold energy for dissociation,
i.e., the difference in the zero-point energies of the transition
state and of HCO2, was found to be about 120 cm-1 higher in
the accurate nonseparable calculation than in the harmonic
separable one. This was due primarily to a large difference in
the transition state zero-point energies, with the nonseparable
calculation giving a ZPE about 250 cm-1 higher than the one
from the separable harmonic calculation. This difference in
transition state zero-point energies combines with a separable
harmonic overestimate of the CO2 reactant ZPE by about 50
cm-1 to produce a 300 cm-1 difference between the separable
harmonic and accurate nonseparable threshold energies for the
H + CO2 association reaction.

Additionally it was found that HCO2 exhibited typical
molecular behavior in that the separable harmonic approximation
significantly underestimated the density of vibrational states at
energies above the dissociation threshold. This effect, combined
with an overestimate of the sum of vibrational states of the
transition state in the separable harmonic approximation (and
the threshold effect noted above), produced separable harmonic
dissociation rate constants forJ ) 0 that differed by as much
as a factor of four from accurate nonseparable rate constants in
the energy range considered.

Calculations of the unimolecular rate constant forJ greater
than zero were presented. One used state-specific rotational
constants. These were obtained by fitting the difference in
energies for exactJ ) 1 results relative toJ ) 0 results to the
expression for a prolate symmetric top (which was shown to
be appropriate for both HCO2 and H‚‚‚CO2). Another, more
approximate, calculation used average rotational constants and
was found to be in reasonably good agreement with the more
accurate one, based on state-specific rotational constants.

Figure 11. Comparison of MMSS K-averaged unimolecular rate
constantsk(E,J) for HCO2 f H + CO2 dissociation with and without
separable Eckart tunneling correction versusJ at an energy 3000 cm-1

in excess of theJ ) 0 threshold.

Figure 12. Comparison of MMSSK-averaged unimolecular rate
constantsk(E,J) for HCO2 f H + CO2 dissociation with and without
separable Eckart tunneling correction as a function of energy forJ )
50.
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Tunneling was incorporated into calculations of the unimo-
lecular rate constants forJ g 0 assuming a separable Eckart
potential along the reaction coordinate. Tunneling was found
to produce significant dissociation rates well below theJ-
dependent classical threshold energies. Within this model, the
extent of tunneling was found to be strongly dependent on the
potential curvature of the barrier, a quantity which has varied
considerably in the various versions of the HCO2 potential.

Quantitative application of RRKM theory requires an accurate
evaluation of the molecular density of states and of the number
of states of the transition state. As has been shown for the
tetraatomic HCO2 system, accurate determination of these
quantities, which requires inclusion of the effects of anharmo-
nicity and intermode coupling, is within reach of current
computational resources. With future developments in computer
hardware, it can be expected that studies of this type will be
extended to larger systems.
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